X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=b9e930e6819643710b82c06faa0b72b934298d96;hb=6bd30534d5aa984c73f511121efa8fda4386c51a;hp=f2e8b2e9ee104e6cbd216e7473fd65dd76947d98;hpb=44802773ad9e5151890ed37e7bb2463ff9fc4135;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index f2e8b2e..b9e930e 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -8,106 +8,58 @@ addsitedir(abspath('../../')) from sage.all import * -def iso_space(K): +def drop_dependent(vs): r""" - Construct the space `W \times W^{\perp}` isomorphic to the ambient space - of ``K`` where `W` is equal to the span of ``K``. + Return the largest linearly-independent subset of ``vs``. """ - V = K.lattice().vector_space() - - # Create the space W \times W^{\perp} isomorphic to V. - # First we get an orthogonal (but not normal) basis... - M = matrix(V.base_field(), K.rays()) - W_basis,_ = M.gram_schmidt() - - W = V.subspace_with_basis(W_basis) - W_perp = W.complement() + result = [] + m = matrix(vs).echelon_form() + for idx in range(0, m.nrows()): + if not m[idx].is_zero(): + result.append(m[idx]) - return W.cartesian_product(W_perp) + return result -def ips_iso(K): +def basically_the_same(K1,K2): r""" - Construct the IPS isomorphism and its inverse from our paper. - - Given a cone ``K``, the returned isomorphism will split its ambient - vector space `V` into a cartesian product `W \times W^{\perp}` where - `W` equals the span of ``K``. + ``True`` if ``K1`` and ``K2`` are basically the same, and ``False`` + otherwise. """ - V = K.lattice().vector_space() - V_iso = iso_space(K) - (W, W_perp) = V_iso.cartesian_factors() - - # A space equivalent to V, but using our basis. - V_user = V.subspace_with_basis( W.basis() + W_perp.basis() ) - - def phi(v): - # Write v in terms of our custom basis, where the first dim(W) - # coordinates are for the W-part of the basis. - cs = V_user.coordinates(v) - - w1 = sum([ V_user.basis()[idx]*cs[idx] - for idx in range(0, W.dimension()) ]) - w2 = sum([ V_user.basis()[idx]*cs[idx] - for idx in range(W.dimension(), V.dimension()) ]) - - return V_iso( (w1, w2) ) - - - def phi_inv( pair ): - # Crash if the arguments are in the wrong spaces. - V_iso(pair) - - #w = sum([ sub_w[idx]*W.basis()[idx] for idx in range(0,m) ]) - #w_prime = sum([ sub_w_prime[idx]*W_perp.basis()[idx] - # for idx in range(0,n-m) ]) - - return sum( pair.cartesian_factors() ) - - - return (phi,phi_inv) - + if K1.lattice_dim() != K2.lattice_dim(): + return False + if K1.nrays() != K2.nrays(): + return False -def unrestrict_span(K, K2=None): - if K2 is None: - K2 = K - - _,phi_inv = ips_iso(K2) - V_iso = iso_space(K2) - (W, W_perp) = V_iso.cartesian_factors() - - rays = [] - for r in K.rays(): - w = sum([ r[idx]*W.basis()[idx] for idx in range(0,len(r)) ]) - pair = V_iso( (w, W_perp.zero()) ) - rays.append( phi_inv(pair) ) - - L = ToricLattice(W.dimension() + W_perp.dimension()) + if K1.dim() != K2.dim(): + return False - return Cone(rays, lattice=L) + if lineality(K1) != lineality(K2): + return False + if K1.is_solid() != K2.is_solid(): + return False + if K1.is_strictly_convex() != K2.is_strictly_convex(): + return False -def intersect_span(K1, K2): - r""" - Return a new cone obtained by intersecting ``K1`` with the span of ``K2``. - """ - L = K1.lattice() + if len(LL(K1)) != len(LL(K2)): + return False - if L.rank() != K2.lattice().rank(): - raise ValueError('K1 and K2 must belong to lattices of the same rank.') + C_of_K1 = discrete_complementarity_set(K1) + C_of_K2 = discrete_complementarity_set(K2) + if len(C_of_K1) != len(C_of_K2): + return False - SL_gens = list(K2.rays()) - span_K2_gens = SL_gens + [ -g for g in SL_gens ] + if len(K1.facets()) != len(K2.facets()): + return False - # The lattices have the same rank (see above) so this should work. - span_K2 = Cone(span_K2_gens, L) - return K1.intersection(span_K2) + return True -def restrict_span(K, K2=None): +def rho(K, K2=None): r""" Restrict ``K`` into its own span, or the span of another cone. @@ -122,18 +74,18 @@ def restrict_span(K, K2=None): EXAMPLES:: sage: K = Cone([(1,)]) - sage: restrict_span(K) == K + sage: rho(K) == K True sage: K2 = Cone([(1,0)]) - sage: restrict_span(K2).rays() + sage: rho(K2).rays() N(1) in 1-d lattice N sage: K3 = Cone([(1,0,0)]) - sage: restrict_span(K3).rays() + sage: rho(K3).rays() N(1) in 1-d lattice N - sage: restrict_span(K2) == restrict_span(K3) + sage: rho(K2) == rho(K3) True TESTS: @@ -141,8 +93,8 @@ def restrict_span(K, K2=None): The projected cone should always be solid:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: K_S = restrict_span(K) + sage: K = random_cone(max_dim = 8) + sage: K_S = rho(K) sage: K_S.is_solid() True @@ -150,104 +102,143 @@ def restrict_span(K, K2=None): dimension as the space we restricted it to:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: K_S = restrict_span( intersect_span(K, K.dual()), K.dual() ) + sage: K = random_cone(max_dim = 8) + sage: K_S = rho(K, K.dual() ) sage: K_S.lattice_dim() == K.dual().dim() True - This function has ``unrestrict_span()`` as its inverse:: - - sage: set_random_seed() - sage: K = random_cone(max_dim = 10, solid=True) - sage: J = restrict_span(K) - sage: K == unrestrict_span(J,K) - True - This function should not affect the dimension of a cone:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: K.dim() == restrict_span(K).dim() + sage: K = random_cone(max_dim = 8) + sage: K.dim() == rho(K).dim() True Nor should it affect the lineality of a cone:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: lineality(K) == lineality(restrict_span(K)) + sage: K = random_cone(max_dim = 8) + sage: lineality(K) == lineality(rho(K)) True No matter which space we restrict to, the lineality should not increase:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: J = intersect_span(K, K.dual()) - sage: lineality(K) >= lineality(restrict_span(J, K.dual())) + sage: K = random_cone(max_dim = 8) + sage: lineality(K) >= lineality(rho(K)) + True + sage: lineality(K) >= lineality(rho(K, K.dual())) True If we do this according to our paper, then the result is proper:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: K_S = restrict_span(K) - sage: P = restrict_span(K_S.dual()).dual() + sage: K = random_cone(max_dim = 8, strictly_convex=False, solid=False) + sage: K_S = rho(K) + sage: P = rho(K_S.dual()).dual() + sage: P.is_proper() + True + sage: P = rho(K_S, K_S.dual()) sage: P.is_proper() True - If ``K`` is strictly convex, then both ``K_W`` and - ``K_star_W.dual()`` should equal ``K`` (after we unrestrict):: + :: sage: set_random_seed() - sage: K = random_cone(max_dim = 10, strictly_convex=True) - sage: K_W = restrict_span(intersect_span(K,K.dual()), K.dual()) - sage: K_star_W_star = restrict_span(K.dual()).dual() - sage: j1 = unrestrict_span(K_W, K.dual()) - sage: j2 = unrestrict_span(K_star_W_star, K.dual()) - sage: j1 == j2 + sage: K = random_cone(max_dim = 8, strictly_convex=True, solid=False) + sage: K_S = rho(K) + sage: P = rho(K_S.dual()).dual() + sage: P.is_proper() True - sage: j1 == K + sage: P = rho(K_S, K_S.dual()) + sage: P.is_proper() + True + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim = 8, strictly_convex=False, solid=True) + sage: K_S = rho(K) + sage: P = rho(K_S.dual()).dual() + sage: P.is_proper() + True + sage: P = rho(K_S, K_S.dual()) + sage: P.is_proper() + True + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim = 8, strictly_convex=True, solid=True) + sage: K_S = rho(K) + sage: P = rho(K_S.dual()).dual() + sage: P.is_proper() + True + sage: P = rho(K_S, K_S.dual()) + sage: P.is_proper() True - sage: K; [ list(r) for r in K.rays() ] Test the proposition in our paper concerning the duals, where the subspace `W` is the span of `K^{*}`:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10, solid=False, strictly_convex=False) - sage: K_W = restrict_span(intersect_span(K,K.dual()), K.dual()) - sage: K_star_W_star = restrict_span(K.dual(), K.dual()).dual() - sage: K_W.nrays() == K_star_W_star.nrays() - True - sage: K_W.dim() == K_star_W_star.dim() + sage: K = random_cone(max_dim = 8, solid=False, strictly_convex=False) + sage: K_W = rho(K, K.dual()) + sage: K_star_W_star = rho(K.dual()).dual() + sage: basically_the_same(K_W, K_star_W_star) True - sage: lineality(K_W) == lineality(K_star_W_star) + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim = 8, solid=True, strictly_convex=False) + sage: K_W = rho(K, K.dual()) + sage: K_star_W_star = rho(K.dual()).dual() + sage: basically_the_same(K_W, K_star_W_star) True - sage: K_W.is_solid() == K_star_W_star.is_solid() + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim = 8, solid=False, strictly_convex=True) + sage: K_W = rho(K, K.dual()) + sage: K_star_W_star = rho(K.dual()).dual() + sage: basically_the_same(K_W, K_star_W_star) True - sage: K_W.is_strictly_convex() == K_star_W_star.is_strictly_convex() + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim = 8, solid=True, strictly_convex=True) + sage: K_W = rho(K, K.dual()) + sage: K_star_W_star = rho(K.dual()).dual() + sage: basically_the_same(K_W, K_star_W_star) True """ if K2 is None: K2 = K - phi,_ = ips_iso(K2) - (W, W_perp) = iso_space(K2).cartesian_factors() - - ray_pairs = [ phi(r) for r in K.rays() ] + # First we project K onto the span of K2. This can be done with + # cones (i.e. without converting to vector spaces), but it's + # annoying to deal with lattice mismatches. + span_K2 = Cone(K2.rays() + (-K2).rays(), lattice=K.lattice()) + K = K.intersection(span_K2) - if any([ w2 != W_perp.zero() for (_, w2) in ray_pairs ]): - msg = 'Cone has nonzero components in W-perp!' - raise ValueError(msg) + V = K.lattice().vector_space() - # Represent the cone in terms of a basis for W, i.e. with smaller - # vectors. - ws = [ W.coordinate_vector(w1) for (w1, _) in ray_pairs ] + # Create the space W \times W^{\perp} isomorphic to V. + # First we get an orthogonal (but not normal) basis... + W_basis = drop_dependent(K2.rays()) + W = V.subspace_with_basis(W_basis) - L = ToricLattice(W.dimension()) + # We've already intersected K with the span of K2, so every + # generator of K should belong to W now. + W_rays = [ W.coordinate_vector(r) for r in K.rays() ] - return Cone(ws, lattice=L) + L = ToricLattice(K2.dim()) + return Cone(W_rays, lattice=L) @@ -304,7 +295,7 @@ def lineality(K): dimension of the ambient space, inclusive:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10) + sage: K = random_cone(max_dim = 8) sage: l = lineality(K) sage: l in ZZ True @@ -314,7 +305,7 @@ def lineality(K): A strictly convex cone should have lineality zero:: sage: set_random_seed() - sage: K = random_cone(max_dim = 10, strictly_convex = True) + sage: K = random_cone(max_dim = 8, strictly_convex = True) sage: lineality(K) 0 @@ -322,94 +313,6 @@ def lineality(K): return K.linear_subspace().dimension() -def codim(K): - r""" - Compute the codimension of this cone. - - The codimension of a cone is the dimension of the space of all - elements perpendicular to every element of the cone. In other words, - the codimension is the difference between the dimension of the - ambient space and the dimension of the cone itself. - - OUTPUT: - - A nonnegative integer representing the dimension of the space of all - elements perpendicular to this cone. - - .. seealso:: - - :meth:`dim`, :meth:`lattice_dim` - - EXAMPLES: - - The codimension of the nonnegative orthant is zero, since the span of - its generators equals the entire ambient space:: - - sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) - sage: codim(K) - 0 - - However, if we remove a ray so that the entire cone is contained - within the `x-y`-plane, then the resulting cone will have - codimension one, because the `z`-axis is perpendicular to every - element of the cone:: - - sage: K = Cone([(1,0,0), (0,1,0)]) - sage: codim(K) - 1 - - If our cone is all of `\mathbb{R}^{2}`, then its codimension is zero:: - - sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)]) - sage: codim(K) - 0 - - And if the cone is trivial in any space, then its codimension is - equal to the dimension of the ambient space:: - - sage: K = Cone([], lattice=ToricLattice(0)) - sage: codim(K) - 0 - - sage: K = Cone([(0,)]) - sage: codim(K) - 1 - - sage: K = Cone([(0,0)]) - sage: codim(K) - 2 - - TESTS: - - The codimension of a cone should be an integer between zero and - the dimension of the ambient space, inclusive:: - - sage: set_random_seed() - sage: K = random_cone(max_dim = 10) - sage: c = codim(K) - sage: c in ZZ - True - sage: (0 <= c) and (c <= K.lattice_dim()) - True - - A solid cone should have codimension zero:: - - sage: set_random_seed() - sage: K = random_cone(max_dim = 10, solid = True) - sage: codim(K) - 0 - - The codimension of a cone is equal to the lineality of its dual:: - - sage: set_random_seed() - sage: K = random_cone(max_dim = 10, solid = True) - sage: codim(K) == lineality(K.dual()) - True - - """ - return (K.lattice_dim() - K.dim()) - - def discrete_complementarity_set(K): r""" Compute the discrete complementarity set of this cone. @@ -543,6 +446,14 @@ def LL(K): [0 0 1] ] + If our cone is the entire space, then every transformation on it is + Lyapunov-like:: + + sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)]) + sage: M = MatrixSpace(QQ,2) + sage: M.basis() == LL(K) + True + TESTS: The inner product `\left< L\left(x\right), s \right>` is zero for @@ -550,7 +461,7 @@ def LL(K): of the cone:: sage: set_random_seed() - sage: K = random_cone(max_dim=8, max_rays=10) + sage: K = random_cone(max_dim=8) sage: C_of_K = discrete_complementarity_set(K) sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ] sage: sum(map(abs, l)) @@ -562,7 +473,7 @@ def LL(K): \right)` sage: set_random_seed() - sage: K = random_cone(max_dim=8, max_rays=10) + sage: K = random_cone(max_dim=8) sage: LL2 = [ L.transpose() for L in LL(K.dual()) ] sage: V = VectorSpace( K.lattice().base_field(), K.lattice_dim()^2) sage: LL1_vecs = [ V(m.list()) for m in LL(K) ] @@ -748,8 +659,8 @@ def lyapunov_rank(K): [Rudolf et al.]_:: sage: set_random_seed() - sage: K1 = random_cone(max_dim=10, strictly_convex=True, solid=True) - sage: K2 = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: K1 = random_cone(max_dim=8, strictly_convex=True, solid=True) + sage: K2 = random_cone(max_dim=8, strictly_convex=True, solid=True) sage: K = K1.cartesian_product(K2) sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2) True @@ -758,14 +669,35 @@ def lyapunov_rank(K): itself [Rudolf et al.]_:: sage: set_random_seed() - sage: K = random_cone(max_dim=10, max_rays=10) + sage: K = random_cone(max_dim=8) sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) True Make sure we exercise the non-strictly-convex/non-solid case:: sage: set_random_seed() - sage: K = random_cone(max_dim=10, strictly_convex=False, solid=False) + sage: K = random_cone(max_dim=8, strictly_convex=False, solid=False) + sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + True + + Let's check the other permutations as well, just to be sure:: + + sage: set_random_seed() + sage: K = random_cone(max_dim=8, strictly_convex=False, solid=True) + sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + True + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim=8, strictly_convex=True, solid=False) + sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + True + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True) sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) True @@ -776,7 +708,7 @@ def lyapunov_rank(K): the Lyapunov rank of the trivial cone will be zero:: sage: set_random_seed() - sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True) sage: b = lyapunov_rank(K) sage: n = K.lattice_dim() sage: (n == 0 or 1 <= b) and b <= n @@ -788,7 +720,7 @@ def lyapunov_rank(K): Lyapunov rank `n-1` in `n` dimensions:: sage: set_random_seed() - sage: K = random_cone(max_dim=10) + sage: K = random_cone(max_dim=8) sage: b = lyapunov_rank(K) sage: n = K.lattice_dim() sage: b == n-1 @@ -798,10 +730,10 @@ def lyapunov_rank(K): reduced to that of a proper cone [Orlitzky/Gowda]_:: sage: set_random_seed() - sage: K = random_cone(max_dim=10) + sage: K = random_cone(max_dim=8) sage: actual = lyapunov_rank(K) - sage: K_S = restrict_span(K) - sage: P = restrict_span(K_S.dual()).dual() + sage: K_S = rho(K) + sage: P = rho(K_S.dual()).dual() sage: l = lineality(K) sage: c = codim(K) sage: expected = lyapunov_rank(P) + K.dim()*(l + c) + c**2 @@ -811,7 +743,29 @@ def lyapunov_rank(K): The Lyapunov rank of a proper cone is just the dimension of ``LL(K)``:: sage: set_random_seed() - sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: K = random_cone(max_dim=8, strictly_convex=True, solid=True) + sage: lyapunov_rank(K) == len(LL(K)) + True + + In fact the same can be said of any cone. These additional tests + just increase our confidence that the reduction scheme works:: + + sage: set_random_seed() + sage: K = random_cone(max_dim=8, strictly_convex=True, solid=False) + sage: lyapunov_rank(K) == len(LL(K)) + True + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim=8, strictly_convex=False, solid=True) + sage: lyapunov_rank(K) == len(LL(K)) + True + + :: + + sage: set_random_seed() + sage: K = random_cone(max_dim=8, strictly_convex=False, solid=False) sage: lyapunov_rank(K) == len(LL(K)) True @@ -825,7 +779,7 @@ def lyapunov_rank(K): if m < n: # K is not solid, project onto its span. - K = restrict_span(K) + K = rho(K) # Lemma 2 beta += m*(n - m) + (n - m)**2 @@ -833,15 +787,8 @@ def lyapunov_rank(K): if l > 0: # K is not pointed, project its dual onto its span. # Uses a proposition from our paper, i.e. this is - # equivalent to K = restrict_span(K.dual()).dual() - K = restrict_span(intersect_span(K,K.dual()), K.dual()) - #K = restrict_span(K.dual()).dual() - - #Ks = [ list(r) for r in sorted(K.rays()) ] - #Js = [ list(r) for r in sorted(J.rays()) ] - - #if Ks != Js: - # print [ list(r) for r in K_orig.rays() ] + # equivalent to K = rho(K.dual()).dual() + K = rho(K, K.dual()) # Lemma 3 beta += m * l