X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=8790c30673a25af96c29bf22ff9e84458516da09;hb=744bc420b47449500f0365e093467ffd268aeda2;hp=c9d6a177ea75c2b3d0d5f3b8bc0fb4332d2b1e97;hpb=4456d5b0a4f57318fd455a6b056efc65b114ca56;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index c9d6a17..8790c30 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -65,122 +65,106 @@ def is_lyapunov_like(L,K): for (x,s) in K.discrete_complementarity_set()]) -def random_element(K): +def motzkin_decomposition(K): r""" - Return a random element of ``K`` from its ambient vector space. + Return the pair of components in the Motzkin decomposition of this cone. - ALGORITHM: + Every convex cone is the direct sum of a strictly convex cone and a + linear subspace [Stoer-Witzgall]_. Return a pair ``(P,S)`` of cones + such that ``P`` is strictly convex, ``S`` is a subspace, and ``K`` + is the direct sum of ``P`` and ``S``. - The cone ``K`` is specified in terms of its generators, so that - ``K`` is equal to the convex conic combination of those generators. - To choose a random element of ``K``, we assign random nonnegative - coefficients to each generator of ``K`` and construct a new vector - from the scaled rays. + OUTPUT: - A vector, rather than a ray, is returned so that the element may - have non-integer coordinates. Thus the element may have an - arbitrarily small norm. + An ordered pair ``(P,S)`` of closed convex polyhedral cones where + ``P`` is strictly convex, ``S`` is a subspace, and ``K`` is the + direct sum of ``P`` and ``S``. - EXAMPLES: + REFERENCES: - A random element of the trivial cone is zero:: + .. [Stoer-Witzgall] J. Stoer and C. Witzgall. Convexity and + Optimization in Finite Dimensions I. Springer-Verlag, New + York, 1970. - sage: set_random_seed() - sage: K = Cone([], ToricLattice(0)) - sage: random_element(K) - () - sage: K = Cone([(0,)]) - sage: random_element(K) - (0) - sage: K = Cone([(0,0)]) - sage: random_element(K) - (0, 0) - sage: K = Cone([(0,0,0)]) - sage: random_element(K) - (0, 0, 0) + EXAMPLES: - A random element of the nonnegative orthant should have all - components nonnegative:: + The nonnegative orthant is strictly convex, so it is its own + strictly convex component and its subspace component is trivial:: - sage: set_random_seed() sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) - sage: all([ x >= 0 for x in random_element(K) ]) + sage: (P,S) = motzkin_decomposition(K) + sage: K.is_equivalent(P) + True + sage: S.is_trivial() + True + + Likewise, full spaces are their own subspace components:: + + sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)]) + sage: K.is_full_space() + True + sage: (P,S) = motzkin_decomposition(K) + sage: K.is_equivalent(S) + True + sage: P.is_trivial() True TESTS: - Any cone should contain a random element of itself:: + A random point in the cone should belong to either the strictly + convex component or the subspace component. If the point is nonzero, + it cannot be in both:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) - sage: K.contains(random_element(K)) + sage: (P,S) = motzkin_decomposition(K) + sage: x = K.random_element(ring=QQ) + sage: P.contains(x) or S.contains(x) True - - A strictly convex cone contains no lines, and thus no negative - multiples of any of its elements besides zero:: - - sage: set_random_seed() - sage: K = random_cone(max_ambient_dim=8, strictly_convex=True) - sage: x = random_element(K) - sage: x.is_zero() or not K.contains(-x) + sage: x.is_zero() or (P.contains(x) != S.contains(x)) True - The sum of random elements of a cone lies in the cone:: + The strictly convex component should always be strictly convex, and + the subspace component should always be a subspace:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) - sage: K.contains(sum([random_element(K) for i in range(10)])) + sage: (P,S) = motzkin_decomposition(K) + sage: P.is_strictly_convex() + True + sage: S.lineality() == S.dim() True - """ - V = K.lattice().vector_space() - scaled_gens = [ V.base_field().random_element().abs()*V(r) for r in K ] - - # Make sure we return a vector. Without the coercion, we might - # return ``0`` when ``K`` has no rays. - return V(sum(scaled_gens)) - - -def motzkin_decomposition(K): - """ - Every convex cone is the direct sum of a pointed cone and a linear - subspace. Return a pair ``(P,S)`` of cones such that ``P`` is - pointed, ``S`` is a subspace, and ``K`` is the direct sum of ``P`` - and ``S``. - - OUTPUT: - - An ordered pair ``(P,S)`` of closed convex polyhedral cones where - ``P`` is pointed, ``S`` is a subspace, and ``K`` is the direct sum - of ``P`` and ``S``. - - TESTS: - - A random point in the cone should belong to either the pointed - subcone ``P`` or the subspace ``S``. If the point is nonzero, it - should lie in one but not both of them:: + The generators of the components are obtained from orthogonal + projections of the original generators [Stoer-Witzgall]_:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8) sage: (P,S) = motzkin_decomposition(K) - sage: x = random_element(K) - sage: P.contains(x) or S.contains(x) + sage: A = S.linear_subspace().complement().matrix() + sage: proj_S_perp = A.transpose() * (A*A.transpose()).inverse() * A + sage: expected_P = Cone([ proj_S_perp*g for g in K ], K.lattice()) + sage: P.is_equivalent(expected_P) True - sage: x.is_zero() or (P.contains(x) != S.contains(x)) + sage: A = S.linear_subspace().matrix() + sage: proj_S = A.transpose() * (A*A.transpose()).inverse() * A + sage: expected_S = Cone([ proj_S*g for g in K ], K.lattice()) + sage: S.is_equivalent(expected_S) True """ - linspace_gens = [ copy(b) for b in K.linear_subspace().basis() ] - linspace_gens += [ -b for b in linspace_gens ] - - S = Cone(linspace_gens, K.lattice()) + # The lines() method only returns one generator per line. For a true + # line, we also need a generator pointing in the opposite direction. + S_gens = [ direction*gen for direction in [1,-1] for gen in K.lines() ] + S = Cone(S_gens, K.lattice()) - # Since ``S`` is a subspace, its dual is its orthogonal complement - # (albeit in the wrong lattice). + # Since ``S`` is a subspace, the rays of its dual generate its + # orthogonal complement. S_perp = Cone(S.dual(), K.lattice()) P = K.intersection(S_perp) return (P,S) + def positive_operator_gens(K): r""" Compute generators of the cone of positive operators on this cone. @@ -195,12 +179,6 @@ def positive_operator_gens(K): EXAMPLES: - The trivial cone in a trivial space has no positive operators:: - - sage: K = Cone([], ToricLattice(0)) - sage: positive_operator_gens(K) - [] - Positive operators on the nonnegative orthant are nonnegative matrices:: sage: K = Cone([(1,)]) @@ -214,6 +192,27 @@ def positive_operator_gens(K): [0 0], [0 0], [1 0], [0 1] ] + The trivial cone in a trivial space has no positive operators:: + + sage: K = Cone([], ToricLattice(0)) + sage: positive_operator_gens(K) + [] + + Every operator is positive on the trivial cone:: + + sage: K = Cone([(0,)]) + sage: positive_operator_gens(K) + [[1], [-1]] + + sage: K = Cone([(0,0)]) + sage: K.is_trivial() + True + sage: positive_operator_gens(K) + [ + [1 0] [-1 0] [0 1] [ 0 -1] [0 0] [ 0 0] [0 0] [ 0 0] + [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1] + ] + Every operator is positive on the ambient vector space:: sage: K = Cone([(1,),(-1,)]) @@ -231,14 +230,93 @@ def positive_operator_gens(K): [0 0], [ 0 0], [0 0], [ 0 0], [1 0], [-1 0], [0 1], [ 0 -1] ] + A non-obvious application is to find the positive operators on the + right half-plane:: + + sage: K = Cone([(1,0),(0,1),(0,-1)]) + sage: positive_operator_gens(K) + [ + [1 0] [0 0] [ 0 0] [0 0] [ 0 0] + [0 0], [1 0], [-1 0], [0 1], [ 0 -1] + ] + TESTS: - A positive operator on a cone should send its generators into the cone:: + Each positive operator generator should send the generators of the + cone into the cone:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: pi_of_K = positive_operator_gens(K) + sage: all([ K.contains(P*x) for P in pi_of_K for x in K ]) + True + + Each positive operator generator should send a random element of the + cone into the cone:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: pi_of_K = positive_operator_gens(K) + sage: all([ K.contains(P*K.random_element(QQ)) for P in pi_of_K ]) + True + + A random element of the positive operator cone should send the + generators of the cone into the cone:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: pi_of_K = positive_operator_gens(K) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L) + sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list()) + sage: all([ K.contains(P*x) for x in K ]) + True + + A random element of the positive operator cone should send a random + element of the cone into the cone:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: pi_of_K = positive_operator_gens(K) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L) + sage: P = matrix(K.lattice_dim(), pi_cone.random_element(QQ).list()) + sage: K.contains(P*K.random_element(ring=QQ)) + True + + The lineality space of the dual of the cone of positive operators + can be computed from the lineality spaces of the cone and its dual:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=5) sage: pi_of_K = positive_operator_gens(K) - sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()]) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: pi_cone = Cone([ g.list() for g in pi_of_K ], lattice=L) + sage: actual = pi_cone.dual().linear_subspace() + sage: U1 = [ vector((s.tensor_product(x)).list()) + ....: for x in K.lines() + ....: for s in K.dual() ] + sage: U2 = [ vector((s.tensor_product(x)).list()) + ....: for x in K + ....: for s in K.dual().lines() ] + sage: expected = pi_cone.lattice().vector_space().span(U1 + U2) + sage: actual == expected + True + + The lineality of the dual of the cone of positive operators + is known from its lineality space:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: n = K.lattice_dim() + sage: m = K.dim() + sage: l = K.lineality() + sage: pi_of_K = positive_operator_gens(K) + sage: L = ToricLattice(n**2) + sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) + sage: actual = pi_cone.dual().lineality() + sage: expected = l*(m - l) + m*(n - m) + sage: actual == expected True The dimension of the cone of positive operators is given by the @@ -256,8 +334,33 @@ def positive_operator_gens(K): sage: actual == expected True - The lineality of the cone of positive operators is given by the - corollary in my paper:: + The trivial cone, full space, and half-plane all give rise to the + expected dimensions:: + + sage: n = ZZ.random_element().abs() + sage: K = Cone([[0] * n], ToricLattice(n)) + sage: K.is_trivial() + True + sage: L = ToricLattice(n^2) + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim() + sage: actual == n^2 + True + sage: K = K.dual() + sage: K.is_full_space() + True + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim() + sage: actual == n^2 + True + sage: K = Cone([(1,0),(0,1),(0,-1)]) + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K]).dim() + sage: actual == 3 + True + + The lineality of the cone of positive operators follows from the + description of its generators:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=5) @@ -269,8 +372,33 @@ def positive_operator_gens(K): sage: actual == expected True - The cone ``K`` is proper if and only if the cone of positive - operators on ``K`` is proper:: + The trivial cone, full space, and half-plane all give rise to the + expected linealities:: + + sage: n = ZZ.random_element().abs() + sage: K = Cone([[0] * n], ToricLattice(n)) + sage: K.is_trivial() + True + sage: L = ToricLattice(n^2) + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: actual == n^2 + True + sage: K = K.dual() + sage: K.is_full_space() + True + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: actual == n^2 + True + sage: K = Cone([(1,0),(0,1),(0,-1)]) + sage: pi_of_K = positive_operator_gens(K) + sage: actual = Cone([p.list() for p in pi_of_K]).lineality() + sage: actual == 2 + True + + A cone is proper if and only if its cone of positive operators + is proper:: sage: set_random_seed() sage: K = random_cone(max_ambient_dim=5) @@ -293,7 +421,9 @@ def positive_operator_gens(K): vectors = [ W(tp.list()) for tp in tensor_products ] # Create the *dual* cone of the positive operators, expressed as - # long vectors.. + # long vectors. WARNING: check=True is necessary even though it + # makes Cone() take forever. For an example take + # K = Cone([(1,0,0),(0,0,1),(0,0,-1)]). pi_dual = Cone(vectors, ToricLattice(W.dimension())) # Now compute the desired cone from its dual... @@ -409,7 +539,9 @@ def Z_transformation_gens(K): vectors = [ W(m.list()) for m in tensor_products ] # Create the *dual* cone of the cross-positive operators, - # expressed as long vectors.. + # expressed as long vectors. WARNING: check=True is necessary + # even though it makes Cone() take forever. For an example take + # K = Cone([(1,0,0),(0,0,1),(0,0,-1)]). Sigma_dual = Cone(vectors, lattice=ToricLattice(W.dimension())) # Now compute the desired cone from its dual...