X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=702472c30466f7cba79d4a79f1bf47a552079364;hb=1ce1d354d9442cf64cb61d41b3354f55b8a4331d;hp=f78c27e7e8ba748274b968601fff61c4701a98c1;hpb=5b7044f0fad38851282ffdc07b55b98c11b7f78e;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index f78c27e..702472c 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -176,7 +176,8 @@ def positive_operator_gens(K): A positive operator on a cone should send its generators into the cone:: - sage: K = random_cone(max_ambient_dim = 6) + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) sage: pi_of_K = positive_operator_gens(K) sage: all([K.contains(p*x) for p in pi_of_K for x in K.rays()]) True @@ -184,16 +185,41 @@ def positive_operator_gens(K): The dimension of the cone of positive operators is given by the corollary in my paper:: - sage: K = random_cone(max_ambient_dim = 6) + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim = 5) sage: n = K.lattice_dim() sage: m = K.dim() sage: l = K.lineality() sage: pi_of_K = positive_operator_gens(K) - sage: actual = Cone([p.list() for p in pi_of_K]).dim() - sage: expected = n**2 - l*(n - l) - (n - m)*m + sage: L = ToricLattice(n**2) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).dim() + sage: expected = n**2 - l*(m - l) - (n - m)*m sage: actual == expected True + The lineality of the cone of positive operators is given by the + corollary in my paper:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: n = K.lattice_dim() + sage: pi_of_K = positive_operator_gens(K) + sage: L = ToricLattice(n**2) + sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality() + sage: expected = n**2 - K.dim()*K.dual().dim() + sage: actual == expected + True + + The cone ``K`` is proper if and only if the cone of positive + operators on ``K`` is proper:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: pi_of_K = positive_operator_gens(K) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L) + sage: K.is_proper() == pi_cone.is_proper() + True """ # Matrices are not vectors in Sage, so we have to convert them # to vectors explicitly before we can find a basis. We need these @@ -286,6 +312,27 @@ def Z_transformation_gens(K): sage: z_cone.linear_subspace() == lls True + And thus, the lineality of Z is the Lyapunov rank:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=6) + sage: Z_of_K = Z_transformation_gens(K) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: z_cone = Cone([ z.list() for z in Z_of_K ], lattice=L) + sage: z_cone.lineality() == K.lyapunov_rank() + True + + The lineality spaces of pi-star and Z-star are equal: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=5) + sage: pi_of_K = positive_operator_gens(K) + sage: Z_of_K = Z_transformation_gens(K) + sage: L = ToricLattice(K.lattice_dim()**2) + sage: pi_star = Cone([p.list() for p in pi_of_K], lattice=L).dual() + sage: z_star = Cone([ z.list() for z in Z_of_K], lattice=L).dual() + sage: pi_star.linear_subspace() == z_star.linear_subspace() + True """ # Matrices are not vectors in Sage, so we have to convert them # to vectors explicitly before we can find a basis. We need these @@ -314,3 +361,18 @@ def Z_transformation_gens(K): # not cross-positive ones. M = MatrixSpace(F, n) return [ -M(v.list()) for v in Sigma_cone.rays() ] + + +def Z_cone(K): + gens = Z_transformation_gens(K) + L = None + if len(gens) == 0: + L = ToricLattice(0) + return Cone([ g.list() for g in gens ], lattice=L) + +def pi_cone(K): + gens = positive_operator_gens(K) + L = None + if len(gens) == 0: + L = ToricLattice(0) + return Cone([ g.list() for g in gens ], lattice=L)