X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=mjo%2Fcone%2Fcone.py;h=421fb3c8f04abb23fd420271ed10e0a7e65815d4;hb=f8e779ee533992a940e1014d00960fc58c3c4b79;hp=2e3dc8afb78cd1f4e1d5f368eb5f75733d127e82;hpb=433b47ffeac9305beb9101afa302c7e924b60744;p=sage.d.git diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index 2e3dc8a..421fb3c 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -8,6 +8,58 @@ addsitedir(abspath('../../')) from sage.all import * +def project_span(K): + r""" + Project ``K`` into its own span. + + EXAMPLES:: + + sage: K = Cone([(1,)]) + sage: project_span(K) == K + True + + sage: K2 = Cone([(1,0)]) + sage: project_span(K2).rays() + N(1) + in 1-d lattice N + sage: K3 = Cone([(1,0,0)]) + sage: project_span(K3).rays() + N(1) + in 1-d lattice N + sage: project_span(K2) == project_span(K3) + True + + TESTS: + + The projected cone should always be solid:: + + sage: K = random_cone(max_dim = 10) + sage: K_S = project_span(K) + sage: K_S.is_solid() + True + + If we do this according to our paper, then the result is proper:: + + sage: K = random_cone(max_dim = 10) + sage: K_S = project_span(K) + sage: P = project_span(K_S.dual()).dual() + sage: P.is_proper() + True + + """ + L = K.lattice() + F = L.base_field() + Q = L.quotient(K.sublattice_complement()) + vecs = [ vector(F, reversed(list(Q(r)))) for r in K.rays() ] + + newL = None + if len(vecs) == 0: + newL = ToricLattice(0) + + return Cone(vecs, lattice=newL) + + + def discrete_complementarity_set(K): r""" Compute the discrete complementarity set of this cone. @@ -87,8 +139,70 @@ def LL(K): OUTPUT: - A ``MatrixSpace`` object `M` such that every matrix `L \in M` is - Lyapunov-like on this cone. + A list of matrices forming a basis for the space of all + Lyapunov-like transformations on the given cone. + + EXAMPLES: + + The trivial cone has no Lyapunov-like transformations:: + + sage: L = ToricLattice(0) + sage: K = Cone([], lattice=L) + sage: LL(K) + [] + + The Lyapunov-like transformations on the nonnegative orthant are + simply diagonal matrices:: + + sage: K = Cone([(1,)]) + sage: LL(K) + [[1]] + + sage: K = Cone([(1,0),(0,1)]) + sage: LL(K) + [ + [1 0] [0 0] + [0 0], [0 1] + ] + + sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) + sage: LL(K) + [ + [1 0 0] [0 0 0] [0 0 0] + [0 0 0] [0 1 0] [0 0 0] + [0 0 0], [0 0 0], [0 0 1] + ] + + Only the identity matrix is Lyapunov-like on the `L^{3}_{1}` and + `L^{3}_{\infty}` cones [Rudolf et al.]_:: + + sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)]) + sage: LL(L31) + [ + [1 0 0] + [0 1 0] + [0 0 1] + ] + + sage: L3infty = Cone([(0,1,1), (1,0,1), (0,-1,1), (-1,0,1)]) + sage: LL(L3infty) + [ + [1 0 0] + [0 1 0] + [0 0 1] + ] + + TESTS: + + The inner product `\left< L\left(x\right), s \right>` is zero for + every pair `\left( x,s \right)` in the discrete complementarity set + of the cone:: + + sage: K = random_cone(max_dim=8, max_rays=10) + sage: C_of_K = discrete_complementarity_set(K) + sage: l = [ (L*x).inner_product(s) for (x,s) in C_of_K for L in LL(K) ] + sage: sum(map(abs, l)) + 0 """ V = K.lattice().vector_space() @@ -171,6 +285,9 @@ def lyapunov_rank(K): cone and Lyapunov-like transformations, Mathematical Programming, 147 (2014) 155-170. + .. [Orlitzky/Gowda] M. Orlitzky and M. S. Gowda. The Lyapunov Rank of an + Improper Cone. Work in-progress. + .. [Rudolf et al.] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh, Bilinear optimality constraints for the cone of positive polynomials, Mathematical Programming, Series B, 129 (2011) 5-31. @@ -190,6 +307,15 @@ def lyapunov_rank(K): sage: lyapunov_rank(octant) 3 + The full space `\mathbb{R}^{n}` has Lyapunov rank `n^{2}` + [Orlitzky/Gowda]_:: + + sage: R5 = VectorSpace(QQ, 5) + sage: gens = R5.basis() + [ -r for r in R5.basis() ] + sage: K = Cone(gens) + sage: lyapunov_rank(K) + 25 + The `L^{3}_{1}` cone is known to have a Lyapunov rank of one [Rudolf et al.]_:: @@ -203,7 +329,30 @@ def lyapunov_rank(K): sage: lyapunov_rank(L3infty) 1 - The Lyapunov rank should be additive on a product of cones + A single ray in `n` dimensions should have Lyapunov rank `n^{2} - n + + 1` [Orlitzky/Gowda]_:: + + sage: K = Cone([(1,0,0,0,0)]) + sage: lyapunov_rank(K) + 21 + sage: K.lattice_dim()**2 - K.lattice_dim() + 1 + 21 + + A subspace (of dimension `m`) in `n` dimensions should have a + Lyapunov rank of `n^{2} - m\left(n - m)` [Orlitzky/Gowda]_:: + + sage: e1 = (1,0,0,0,0) + sage: neg_e1 = (-1,0,0,0,0) + sage: e2 = (0,1,0,0,0) + sage: neg_e2 = (0,-1,0,0,0) + sage: zero = (0,0,0,0,0) + sage: K = Cone([e1, neg_e1, e2, neg_e2, zero, zero, zero]) + sage: lyapunov_rank(K) + 19 + sage: K.lattice_dim()**2 - K.dim()*(K.lattice_dim() - K.dim()) + 19 + + The Lyapunov rank should be additive on a product of proper cones [Rudolf et al.]_:: sage: L31 = Cone([(1,0,1), (0,-1,1), (-1,0,1), (0,1,1)]) @@ -229,11 +378,11 @@ def lyapunov_rank(K): TESTS: - The Lyapunov rank should be additive on a product of cones + The Lyapunov rank should be additive on a product of proper cones [Rudolf et al.]_:: - sage: K1 = random_cone(max_dim=10, max_rays=10) - sage: K2 = random_cone(max_dim=10, max_rays=10) + sage: K1 = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: K2 = random_cone(max_dim=10, strictly_convex=True, solid=True) sage: K = K1.cartesian_product(K2) sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2) True @@ -259,5 +408,54 @@ def lyapunov_rank(K): sage: b == n-1 False + In fact [Orlitzky/Gowda]_, no closed convex polyhedral cone can have + Lyapunov rank `n-1` in `n` dimensions:: + + sage: K = random_cone(max_dim=10) + sage: b = lyapunov_rank(K) + sage: n = K.lattice_dim() + sage: b == n-1 + False + + The calculation of the Lyapunov rank of an improper cone can be + reduced to that of a proper cone [Orlitzky/Gowda]_:: + + sage: K = random_cone(max_dim=10) + sage: actual = lyapunov_rank(K) + sage: K_S = project_span(K) + sage: P = project_span(K_S.dual()).dual() + sage: l = K.linear_subspace().dimension() + sage: codim = K.lattice_dim() - K.dim() + sage: expected = lyapunov_rank(P) + K.dim()*(l + codim) + codim**2 + sage: actual == expected + True + + The Lyapunov rank of a proper cone is just the dimension of ``LL(K)``:: + + sage: K = random_cone(max_dim=10, strictly_convex=True, solid=True) + sage: lyapunov_rank(K) == len(LL(K)) + True + """ - return len(LL(K)) + beta = 0 + + m = K.dim() + n = K.lattice_dim() + l = K.linear_subspace().dimension() + + if m < n: + # K is not solid, project onto its span. + K = project_span(K) + + # Lemma 2 + beta += m*(n - m) + (n - m)**2 + + if l > 0: + # K is not pointed, project its dual onto its span. + K = project_span(K.dual()).dual() + + # Lemma 3 + beta += m * l + + beta += len(LL(K)) + return beta