X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=examples.tex;h=e11815ef7856b47f0dd5cb0e775c3272caeec427;hb=71dc84ac39e0dc87daf64fe61d7523e33711dc34;hp=c1f3df1eb64e416fb00c52f809cdcfc562138324;hpb=71b85fe2012cdf733f6e72137038d7d9960ddf08;p=mjotex.git diff --git a/examples.tex b/examples.tex index c1f3df1..e11815e 100644 --- a/examples.tex +++ b/examples.tex @@ -29,7 +29,13 @@ If $R$ is a \index{commutative ring}, then $\polyring{R}{X,Y,Z}$ is a multivariate polynomial ring with indeterminates $X$, $Y$, and $Z$, and coefficients in $R$. If $R$ is a moreover an integral - domain, then its fraction field is $\Frac{R}$. + domain, then its fraction field is $\Frac{R}$. If $x,y,z \in R$, + then $\ideal{\set{x,y,z}}$ is the ideal generated by + $\set{x,y,z}$, which is defined to be the smallest ideal in $R$ + containing that set. Likewise, if we are in an algebra + $\mathcal{A}$ and if $x,y,z \in \mathcal{A}$, then + $\alg{\set{x,y,z}}$ is the smallest subalgebra of $\mathcal{A}$ + containing the set $\set{x,y,z}$. \end{section} \begin{section}{Algorithm} @@ -53,8 +59,9 @@ \end{section} \begin{section}{Arrow} - The identity operator on $V$ is $\identity{V}$. The composition of - $f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is + The constant function that always returns $a$ is $\const{a}$. The + identity operator on $V$ is $\identity{V}$. The composition of $f$ + and $g$ is $\compose{f}{g}$. The inverse of $f$ is $\inverse{f}$. If $f$ is a function and $A$ is a subset of its domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$. \end{section} @@ -67,9 +74,31 @@ \begin{section}{Common} The function $f$ applied to $x$ is $f\of{x}$. We can group terms like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - d}}$. Here's a - set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. Here's a pair - of things $\pair{1}{2}$ or a triple of them $\triple{1}{2}{3}$, - and the factorial of the number $10$ is $\factorial{10}$. + set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. The tuples go + up to seven, for now: + % + \begin{itemize} + \begin{item} + Pair: $\pair{1}{2}$, + \end{item} + \begin{item} + Triple: $\triple{1}{2}{3}$, + \end{item} + \begin{item} + Quadruple: $\quadruple{1}{2}{3}{4}$, + \end{item} + \begin{item} + Qintuple: $\quintuple{1}{2}{3}{4}{5}$, + \end{item} + \begin{item} + Sextuple: $\sextuple{1}{2}{3}{4}{5}{6}$, + \end{item} + \begin{item} + Septuple: $\septuple{1}{2}{3}{4}{5}{6}{7}$. + \end{item} + \end{itemize} + % + The factorial of the number $10$ is $\factorial{10}$. The Cartesian product of two sets $A$ and $B$ is $\cartprod{A}{B}$; if we take the product with $C$ as well, then @@ -83,6 +112,7 @@ \begin{equation*} \directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}. \end{equation*} + % Here are a few common tuple spaces that should not have a superscript when that superscript would be one: $\Nn[1]$, $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the @@ -101,7 +131,7 @@ \begin{equation*} \unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}} \end{equation*} - + % Finally, we have the four standard types of intervals in $\Rn[1]$, % \begin{align*} @@ -142,7 +172,14 @@ \end{section} \begin{section}{Font} - We can write things like Carathéodory and Güler and $\mathbb{R}$. + We can write things like Carathéodory and Güler and + $\mathbb{R}$. The PostScript Zapf Chancery font is also available + in both upper- and lower-case: + % + \begin{itemize} + \begin{item}$\mathpzc{abcdefghijklmnopqrstuvwxyz}$\end{item} + \begin{item}$\mathpzc{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\end{item} + \end{itemize} \end{section} \begin{section}{Linear algebra} @@ -153,7 +190,12 @@ $L$ is $\adjoint{L}$, or if it's a matrix, then its transpose is $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific concept is the Moore-Penrose pseudoinverse of $L$, denoted by - $\pseudoinverse{L}$. + $\pseudoinverse{L}$. Finally, the rank of a matrix $L$ is + $\rank{L}$. As far as matrix spaces go, we have the $n$-by-$n$ + real-symmetric and complex-Hermitian matrices $\Sn$ and $\Hn$ + respectively; however $\Sn[1]$ and $\Hn[1]$ do not automatically + simplify because the ``$n$'' does not indicate the arity of a + Cartesian product in this case. The span of a set $X$ is $\spanof{X}$, and its codimension is $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The @@ -219,11 +261,6 @@ system to test them. \end{section} - \begin{section}{Miscellaneous} - The cardinality of the set $X \coloneqq \set{1,2,3}$ is $\card{X} - = 3$. - \end{section} - \begin{section}{Proof by cases} \begin{proposition} @@ -270,6 +307,11 @@ \renewcommand{\baselinestretch}{1} \end{section} + \begin{section}{Set theory} + The cardinality of the set $X \coloneqq \set{1,2,3}$ is $\card{X} + = 3$, and its powerset is $\powerset{X}$. + \end{section} + \begin{section}{Theorems} \begin{corollary} The