X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=examples.tex;h=cb7d28a1f41d3a17c02635b370c3cb0fbe36a54f;hb=37b342a8a6fada8b0fbe828bdf97f346b538f5f4;hp=4005cdd984dfe9a46194751b97b1bea2b8679748;hpb=f114f14b8b351c58103bc0f55f69778175ab57b6;p=mjotex.git diff --git a/examples.tex b/examples.tex index 4005cdd..cb7d28a 100644 --- a/examples.tex +++ b/examples.tex @@ -1,7 +1,17 @@ \documentclass{report} -% We have to load this before mjotex so that mjotex knows to define -% its glossary entries. +% Setting hypertexnames=false forces hyperref to use a consistent +% internal counter for proposition/equation references rather than +% being clever, which doesn't work after we reset those counters. +\usepackage[hypertexnames=false]{hyperref} +\hypersetup{ + colorlinks=true, + linkcolor=blue, + citecolor=blue +} + +% We have to load this after hyperref, so that links work, but before +% mjotex so that mjotex knows to define its glossary entries. \usepackage[nonumberlist]{glossaries} \makenoidxglossaries @@ -43,8 +53,9 @@ \end{section} \begin{section}{Arrow} - The identity operator on $V$ is $\identity{V}$. The composition of - $f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is + The constant function that always returns $a$ is $\const{a}$. The + identity operator on $V$ is $\identity{V}$. The composition of $f$ + and $g$ is $\compose{f}{g}$. The inverse of $f$ is $\inverse{f}$. If $f$ is a function and $A$ is a subset of its domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$. \end{section} @@ -57,9 +68,31 @@ \begin{section}{Common} The function $f$ applied to $x$ is $f\of{x}$. We can group terms like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - d}}$. Here's a - set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. Here's a pair - of things $\pair{1}{2}$ or a triple of them $\triple{1}{2}{3}$, - and the factorial of the number $10$ is $\factorial{10}$. + set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. The tuples go + up to seven, for now: + % + \begin{itemize} + \begin{item} + Pair: $\pair{1}{2}$, + \end{item} + \begin{item} + Triple: $\triple{1}{2}{3}$, + \end{item} + \begin{item} + Quadruple: $\quadruple{1}{2}{3}{4}$, + \end{item} + \begin{item} + Qintuple: $\quintuple{1}{2}{3}{4}{5}$, + \end{item} + \begin{item} + Sextuple: $\sextuple{1}{2}{3}{4}{5}{6}$, + \end{item} + \begin{item} + Septuple: $\septuple{1}{2}{3}{4}{5}{6}{7}$. + \end{item} + \end{itemize} + % + The factorial of the number $10$ is $\factorial{10}$. The Cartesian product of two sets $A$ and $B$ is $\cartprod{A}{B}$; if we take the product with $C$ as well, then @@ -157,6 +190,9 @@ $\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$ instead. + If you want to solve a system of equations, try Cramer's + rule~\cite{ehrenborg}. + The direct sum of $V$ and $W$ is $\directsum{V}{W}$, of course, but what if $W = V^{\perp}$? Then we wish to indicate that fact by writing $\directsumperp{V}{W}$. That operator should survive a @@ -335,5 +371,8 @@ \glsaddall \printnoidxglossaries + \bibliographystyle{mjo} + \bibliography{local-references} + \printindex \end{document}