X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=examples.tex;h=c00279b16beb44514ae8e80e371d8dc3f8392a35;hb=17fd11a2ac39c8d20680a61279efed7bd18f93f2;hp=cb7d28a1f41d3a17c02635b370c3cb0fbe36a54f;hpb=37b342a8a6fada8b0fbe828bdf97f346b538f5f4;p=mjotex.git diff --git a/examples.tex b/examples.tex index cb7d28a..c00279b 100644 --- a/examples.tex +++ b/examples.tex @@ -29,7 +29,13 @@ If $R$ is a \index{commutative ring}, then $\polyring{R}{X,Y,Z}$ is a multivariate polynomial ring with indeterminates $X$, $Y$, and $Z$, and coefficients in $R$. If $R$ is a moreover an integral - domain, then its fraction field is $\Frac{R}$. + domain, then its fraction field is $\Frac{R}$. If $x,y,z \in R$, + then $\ideal{\set{x,y,z}}$ is the ideal generated by + $\set{x,y,z}$, which is defined to be the smallest ideal in $R$ + containing that set. Likewise, if we are in an algebra + $\mathcal{A}$ and if $x,y,z \in \mathcal{A}$, then + $\alg{\set{x,y,z}}$ is the smallest subalgebra of $\mathcal{A}$ + containing the set $\set{x,y,z}$. \end{section} \begin{section}{Algorithm}