X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=examples.tex;h=897396c1061d05706da5b7d21cd187aa6199b76b;hb=ce11edfc0c1c7b1dcbbbc21512336f91ad006863;hp=e0ffcb97a11ce5a97a2e837e7c994fd19714e1ae;hpb=987368c596bfe23dbcbaf5260a0d7011c9d3fc1e;p=mjotex.git diff --git a/examples.tex b/examples.tex index e0ffcb9..897396c 100644 --- a/examples.tex +++ b/examples.tex @@ -36,13 +36,21 @@ The function $f$ applied to $x$ is $f\of{x}$. We can group terms like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - d}}$. Here's a set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. Here's a pair - of things $\pair{1}{2}$ or a triple of them - $\triple{1}{2}{3}$. The Cartesian product of two sets $A$ and $B$ - is $\cartprod{A}{B}$; if we take the product with $C$ as well, - then we obtain $\cartprodthree{A}{B}{C}$. The direct sum of $V$ - and $W$ is $\directsum{V}{W}$ and the factorial of the number $10$ - is $\factorial{10}$. - + of things $\pair{1}{2}$ or a triple of them $\triple{1}{2}{3}$, + and the factorial of the number $10$ is $\factorial{10}$. + + The Cartesian product of two sets $A$ and $B$ is + $\cartprod{A}{B}$; if we take the product with $C$ as well, then + we obtain $\cartprodthree{A}{B}{C}$. The direct sum of $V$ and $W$ + is $\directsum{V}{W}$. Or three things, + $\directsumthree{U}{V}{W}$. How about more things? Like + $\directsummany{k=1}{\infty}{V_{k}} \ne + \cartprodmany{k=1}{\infty}{V_{k}}$. Those direct sums and + cartesian products adapt nicely to display equations: + % + \begin{equation*} + \directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}. + \end{equation*} Here are a few common tuple spaces that should not have a superscript when that superscript would be one: $\Nn[1]$, $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the @@ -61,7 +69,15 @@ \begin{equation*} \unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}} \end{equation*} + + Finally, we have the four standard types of intervals in $\Rn[1]$, % + \begin{align*} + \intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\ + \intervaloc{a}{b} &= \setc{ x \in \Rn[1]}{ a < x \le b },\\ + \intervalco{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x < b }, \text{ and }\\ + \intervalcc{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x \le b }. + \end{align*} \end{section} \begin{section}{Cone} @@ -91,7 +107,9 @@ their tensor product is $\tp{x}{y}$. The Kronecker product of matrices $A$ and $B$ is $\kp{A}{B}$. The adjoint of the operator $L$ is $\adjoint{L}$, or if it's a matrix, then its transpose is - $\transpose{L}$. Its trace is $\trace{L}$. + $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific + concept is the Moore-Penrose pseudoinverse of $L$, denoted by + $\pseudoinverse{L}$. The span of a set $X$ is $\spanof{X}$, and its codimension is $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The @@ -261,5 +279,5 @@ The interior of a set $X$ is $\interior{X}$. Its closure is $\closure{X}$ and its boundary is $\boundary{X}$. \end{section} - + \end{document}