X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=examples.tex;h=52326358fc9ca2f11637423b78f43125467a9e86;hb=1efe9c09be9e93ed5dbb2ae60d787517eb0609ca;hp=babc886abe26b31ef223cb783e2fa43d4d848d79;hpb=cab35094298c00d10035e926b64ff69df33393a5;p=mjotex.git diff --git a/examples.tex b/examples.tex index babc886..5232635 100644 --- a/examples.tex +++ b/examples.tex @@ -57,7 +57,7 @@ \State{Rearrange $M$ randomly} \EndWhile{} - \Return{$M$} + \State{\Return{$M$}} \end{algorithmic} \end{algorithm} \end{section} @@ -79,7 +79,8 @@ The function $f$ applied to $x$ is $f\of{x}$, and the restriction of $f$ to a subset $X$ of its domain is $\restrict{f}{X}$. We can group terms like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - - d}}$. The tuples go up to seven, for now: + d}}$. The tuples go up to seven, for now, and then we give up + and use the general construct: % \begin{itemize} \begin{item} @@ -100,6 +101,9 @@ \begin{item} Septuple: $\septuple{1}{2}{3}{4}{5}{6}{7}$. \end{item} + \begin{item} + Tuple: $\tuple{1,2,\ldots,8675309}$. + \end{item} \end{itemize} % The factorial of the number $10$ is $\factorial{10}$, and the @@ -139,12 +143,12 @@ \begin{section}{Cone} The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones - are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones - $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$, - $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$, - $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x - \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x - \ltcone_{K} y$ with respect to a cone $K$. + are $\Rnplus$, $\Rnplusplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. + If cones $K_{1}$ and $K_{2}$ are given, we can define + $\posops{K_{1}}$, $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, + $\Zof{K_{1}}$, $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can + also define $x \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} + y$, and $x \ltcone_{K} y$ with respect to a cone $K$. \end{section} \begin{section}{Convex} @@ -172,6 +176,11 @@ \end{itemize} \end{section} + \begin{section}{Hurwitz} + Here lies the Hurwitz algebras, like the quaternions + $\quaternions$ and octonions $\octonions$. + \end{section} + \begin{section}{Linear algebra} The absolute value of $x$ is $\abs{x}$, or its norm is $\norm{x}$. The inner product of $x$ and $y$ is $\ip{x}{y}$ and