X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=examples.tex;h=0656165d2c7821f1f366cda489bf3dd21f4eaa54;hb=fe30cc3cf8f9a88785d2899d00a727931377bb5d;hp=dde74d0f6997418a8ab283ee1f6fb53452f6a6bf;hpb=8f3a3f952b0e5bd692b9b41d1417c877b0e0425e;p=mjotex.git diff --git a/examples.tex b/examples.tex index dde74d0..0656165 100644 --- a/examples.tex +++ b/examples.tex @@ -112,6 +112,7 @@ \begin{equation*} \directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}. \end{equation*} + % Here are a few common tuple spaces that should not have a superscript when that superscript would be one: $\Nn[1]$, $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the @@ -130,8 +131,9 @@ \begin{equation*} \unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}} \end{equation*} - - Finally, we have the four standard types of intervals in $\Rn[1]$, + % + The powerset of $X$ displays nicely, as $\powerset{X}$. Finally, + we have the four standard types of intervals in $\Rn[1]$, % \begin{align*} \intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\ @@ -171,7 +173,14 @@ \end{section} \begin{section}{Font} - We can write things like Carathéodory and Güler and $\mathbb{R}$. + We can write things like Carathéodory and Güler and + $\mathbb{R}$. The PostScript Zapf Chancery font is also available + in both upper- and lower-case: + % + \begin{itemize} + \begin{item}$\mathpzc{abcdefghijklmnopqrstuvwxyz}$\end{item} + \begin{item}$\mathpzc{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$\end{item} + \end{itemize} \end{section} \begin{section}{Linear algebra} @@ -183,7 +192,11 @@ $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific concept is the Moore-Penrose pseudoinverse of $L$, denoted by $\pseudoinverse{L}$. Finally, the rank of a matrix $L$ is - $\rank{L}$. + $\rank{L}$. As far as matrix spaces go, we have the $n$-by-$n$ + real-symmetric and complex-Hermitian matrices $\Sn$ and $\Hn$ + respectively; however $\Sn[1]$ and $\Hn[1]$ do not automatically + simplify because the ``$n$'' does not indicate the arity of a + Cartesian product in this case. The span of a set $X$ is $\spanof{X}$, and its codimension is $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The