X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=dunshire%2Fgames.py;h=e9ae21dd9fca7803ce0f67d5ba60f3d3555419c7;hb=7d7775ac5300884e4e87fad322daa98469e3531c;hp=75f5329bb973e05d9070609fcb77e5eeba80fdee;hpb=a35db50836050e28ee4e06a12caeaa30ebbb4b11;p=dunshire.git diff --git a/dunshire/games.py b/dunshire/games.py index 75f5329..e9ae21d 100644 --- a/dunshire/games.py +++ b/dunshire/games.py @@ -179,11 +179,15 @@ class SymmetricLinearGame: ---------- L : list of list of float - A matrix represented as a list of ROWS. This representation - agrees with (for example) SageMath and NumPy, but not with CVXOPT - (whose matrix constructor accepts a list of columns). - - K : :class:`SymmetricCone` + A matrix represented as a list of **rows**. This representation + agrees with (for example) `SageMath `_ + and `NumPy `_, but not with CVXOPT (whose + matrix constructor accepts a list of columns). In reality, ``L`` + can be any iterable type of the correct length; however, you + should be extremely wary of the way we interpret anything other + than a list of rows. + + K : dunshire.cones.SymmetricCone The symmetric cone instance over which the game is played. e1 : iterable float @@ -461,8 +465,8 @@ class SymmetricLinearGame: The payoff operator takes pairs of strategies to a real number. For example, if player one's strategy is :math:`x` and player two's strategy is :math:`y`, then the associated payoff - is :math:`\left\langle L\left(x\right),y \right\rangle` \in - \mathbb{R}. Here, :math:`L` denotes the same linear operator as + is :math:`\left\langle L\left(x\right),y \right\rangle \in + \mathbb{R}`. Here, :math:`L` denotes the same linear operator as :meth:`L`. This method computes the payoff given the two players' strategies. @@ -577,11 +581,11 @@ class SymmetricLinearGame: def A(self): - """ + r""" Return the matrix ``A`` used in our CVXOPT construction. - This matrix ``A`` appears on the right-hand side of ``Ax = b`` - in the statement of the CVXOPT conelp program. + This matrix :math:`A` appears on the right-hand side of :math:`Ax + = b` in the statement of the CVXOPT conelp program. .. warning:: @@ -593,7 +597,7 @@ class SymmetricLinearGame: matrix A ``1``-by-``(1 + self.dimension())`` row vector. Its first - entry is zero, and the rest are the entries of ``e2``. + entry is zero, and the rest are the entries of :meth:`e2`. Examples -------- @@ -617,8 +621,8 @@ class SymmetricLinearGame: r""" Return the matrix ``G`` used in our CVXOPT construction. - Thus matrix ``G`` appears on the left-hand side of ``Gx + s = h`` - in the statement of the CVXOPT conelp program. + Thus matrix :math:`G` appears on the left-hand side of :math:`Gx + + s = h` in the statement of the CVXOPT conelp program. .. warning:: @@ -656,11 +660,12 @@ class SymmetricLinearGame: def c(self): - """ + r""" Return the vector ``c`` used in our CVXOPT construction. - The column vector ``c`` appears in the objective function - value ```` in the statement of the CVXOPT conelp program. + The column vector :math:`c` appears in the objective function + value :math:`\left\langle c,x \right\rangle` in the statement of + the CVXOPT conelp program. .. warning:: @@ -671,7 +676,7 @@ class SymmetricLinearGame: ------- matrix - A ``self.dimension()``-by-``1`` column vector. + A :meth:`dimension`-by-``1`` column vector. Examples -------- @@ -697,8 +702,7 @@ class SymmetricLinearGame: """ Return the cone ``C`` used in our CVXOPT construction. - The cone ``C`` is the cone over which the conelp program takes - place. + This is the cone over which the conelp program takes place. Returns ------- @@ -727,7 +731,7 @@ class SymmetricLinearGame: r""" Return the ``h`` vector used in our CVXOPT construction. - The ``h`` vector appears on the right-hand side of :math:`Gx + s + The :math:`h` vector appears on the right-hand side of :math:`Gx + s = h` in the statement of the CVXOPT conelp program. .. warning:: @@ -809,11 +813,26 @@ class SymmetricLinearGame: Return a feasible starting point for player one. This starting point is for the CVXOPT formulation and not for - the original game. The basic premise is that if you normalize - :meth:`e2`, then you get a point in :meth:`K` that makes a unit - inner product with :meth:`e2`. We then get to choose the primal - objective function value such that the constraint involving - :meth:`L` is satisfied. + the original game. The basic premise is that if you scale + :meth:`e2` by the reciprocal of its squared norm, then you get a + point in :meth:`K` that makes a unit inner product with + :meth:`e2`. We then get to choose the primal objective function + value such that the constraint involving :meth:`L` is satisfied. + + Returns + ------- + + dict + A dictionary with two keys, ``'x'`` and ``'s'``, which + contain the vectors of the same name in the CVXOPT primal + problem formulation. + + The vector ``x`` consists of the primal objective function + value concatenated with the strategy (for player one) that + achieves it. The vector ``s`` is essentially a dummy + variable, and is computed from the equality constraing in + the CVXOPT primal problem. + """ p = self.e2() / (norm(self.e2()) ** 2) dist = self.K().ball_radius(self.e1()) @@ -827,6 +846,29 @@ class SymmetricLinearGame: def player2_start(self): """ Return a feasible starting point for player two. + + This starting point is for the CVXOPT formulation and not for + the original game. The basic premise is that if you scale + :meth:`e1` by the reciprocal of its squared norm, then you get a + point in :meth:`K` that makes a unit inner product with + :meth:`e1`. We then get to choose the dual objective function + value such that the constraint involving :meth:`L` is satisfied. + + Returns + ------- + + dict + A dictionary with two keys, ``'y'`` and ``'z'``, which + contain the vectors of the same name in the CVXOPT dual + problem formulation. + + The ``1``-by-``1`` vector ``y`` consists of the dual + objective function value. The last :meth:`dimension` entries + of the vector ``z`` contain the strategy (for player two) + that achieves it. The remaining entries of ``z`` are + essentially dummy variables, computed from the equality + constraint in the CVXOPT dual problem. + """ q = self.e1() / (norm(self.e1()) ** 2) dist = self.K().ball_radius(self.e2()) @@ -855,6 +897,19 @@ class SymmetricLinearGame: A nonnegative real number; the largest singular value of the matrix :meth:`L`. + Examples + -------- + + >>> from dunshire import * + >>> from dunshire.matrices import specnorm + >>> L = [[1,2],[3,4]] + >>> K = NonnegativeOrthant(2) + >>> e1 = [1,1] + >>> e2 = e1 + >>> SLG = SymmetricLinearGame(L,K,e1,e2) + >>> specnorm(SLG.L()) == SLG._L_specnorm() + True + """ if self._L_specnorm_value is None: self._L_specnorm_value = specnorm(self.L()) @@ -863,19 +918,19 @@ class SymmetricLinearGame: def tolerance_scale(self, solution): r""" - Return a scaling factor that should be applied to ``ABS_TOL`` + Return a scaling factor that should be applied to :const:`ABS_TOL` for this game. - When performing certain comparisons, the default tolernace - ``ABS_TOL`` may not be appropriate. For example, if we expect - ``x`` and ``y`` to be within ``ABS_TOL`` of each other, than the - inner product of ``L*x`` and ``y`` can be as far apart as the - spectral norm of ``L`` times the sum of the norms of ``x`` and - ``y``. Such a comparison is made in :meth:`solution`, and in - many of our unit tests. + When performing certain comparisons, the default tolerance + :const:`ABS_TOL` may not be appropriate. For example, if we expect + ``x`` and ``y`` to be within :const:`ABS_TOL` of each other, + than the inner product of ``L*x`` and ``y`` can be as far apart + as the spectral norm of ``L`` times the sum of the norms of + ``x`` and ``y``. Such a comparison is made in :meth:`solution`, + and in many of our unit tests. - The returned scaling factor found from the inner product mentioned - above is + The returned scaling factor found from the inner product + mentioned above is .. math:: @@ -906,9 +961,26 @@ class SymmetricLinearGame: ------- float - A scaling factor to be multiplied by ``ABS_TOL`` when + A scaling factor to be multiplied by :const:`ABS_TOL` when making comparisons involving solutions of this game. + Examples + -------- + + The spectral norm of ``L`` in this case is around ``5.464``, and + the optimal strategies both have norm one, so we expect the + tolerance scale to be somewhere around ``2 * 5.464``, or + ``10.929``:: + + >>> from dunshire import * + >>> L = [[1,2],[3,4]] + >>> K = NonnegativeOrthant(2) + >>> e1 = [1,1] + >>> e2 = e1 + >>> SLG = SymmetricLinearGame(L,K,e1,e2) + >>> SLG.tolerance_scale(SLG.solution()) + 10.929... + """ norm_p1_opt = norm(solution.player1_optimal()) norm_p2_opt = norm(solution.player2_optimal()) @@ -1134,12 +1206,14 @@ class SymmetricLinearGame: # same. Even if CVXOPT bails out due to numerical difficulty, # it will have some candidate points in mind. If those # candidates are good enough, we take them. We do the same - # check (perhaps pointlessly so) for "optimal" results. + # check for "optimal" results. # # First we check that the primal/dual objective values are - # close enough (one could be low by ABS_TOL, the other high by - # it) because otherwise CVXOPT might return "unknown" and give - # us two points in the cone that are nowhere near optimal. + # close enough because otherwise CVXOPT might return "unknown" + # and give us two points in the cone that are nowhere near + # optimal. And in fact, we need to ensure that they're close + # for "optimal" results, too, because we need to know how + # lenient to be in our testing. # if abs(p1_value - p2_value) > self.tolerance_scale(soln)*ABS_TOL: printing.options['dformat'] = DEBUG_FLOAT_FORMAT