X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=dunshire%2Fgames.py;h=bb808cb592d8e013d390e69ee1b6527fc64db583;hb=2132f293d3ab198630f9fa26151eed52b21512fb;hp=3ed89bb3f2f70b30d0313cbe5a578e4f53e47421;hpb=e41ad668f4f16d8948181ae307cb98430b37ed1d;p=dunshire.git diff --git a/dunshire/games.py b/dunshire/games.py index 3ed89bb..bb808cb 100644 --- a/dunshire/games.py +++ b/dunshire/games.py @@ -4,10 +4,8 @@ Symmetric linear games and their solutions. This module contains the main :class:`SymmetricLinearGame` class that knows how to solve a linear game. """ -from math import sqrt - from cvxopt import matrix, printing, solvers -from .cones import CartesianProduct, IceCream, NonnegativeOrthant +from .cones import CartesianProduct from .errors import GameUnsolvableException, PoorScalingException from .matrices import (append_col, append_row, condition_number, identity, inner_product, norm, specnorm) @@ -24,7 +22,7 @@ class Solution: -------- >>> print(Solution(10, matrix([1,2]), matrix([3,4]))) - Game value: 10.0000000 + Game value: 10.000... Player 1 optimal: [ 1] [ 2] @@ -822,30 +820,29 @@ class SymmetricLinearGame: :meth:`L` is satisfied. """ p = self.e2() / (norm(self.e2()) ** 2) - - # Compute the distance from p to the outside of K. - if isinstance(self.K(), NonnegativeOrthant): - # How far is it to a wall? - dist = min(list(self.e1())) - elif isinstance(self.K(), IceCream): - # How far is it to the boundary of the ball that defines - # the ice-cream cone at a given height? Now draw a - # 45-45-90 triangle and the shortest distance to the - # outside of the cone should be 1/sqrt(2) of that. - # It works in R^2, so it works everywhere, right? - height = self.e1()[0] - radius = norm(self.e1()[1:]) - dist = (height - radius) / sqrt(2) - else: - raise NotImplementedError - + dist = self.K().ball_radius(self.e1()) nu = - specnorm(self.L())/(dist*norm(self.e2())) - x = matrix([nu,p], (self.dimension() + 1, 1)) + x = matrix([nu, p], (self.dimension() + 1, 1)) s = - self._G()*x return {'x': x, 's': s} + def player2_start(self): + """ + Return a feasible starting point for player two. + """ + q = self.e1() / (norm(self.e1()) ** 2) + dist = self.K().ball_radius(self.e2()) + omega = specnorm(self.L())/(dist*norm(self.e1())) + y = matrix([omega]) + z2 = q + z1 = y*self.e2() - self.L().trans()*z2 + z = matrix([z1, z2], (self.dimension()*2, 1)) + + return {'y': y, 'z': z} + + def solution(self): """ Solve this linear game and return a :class:`Solution`. @@ -880,11 +877,11 @@ class SymmetricLinearGame: >>> e2 = [1,1,1] >>> SLG = SymmetricLinearGame(L, K, e1, e2) >>> print(SLG.solution()) - Game value: -6.1724138 + Game value: -6.172... Player 1 optimal: - [ 0.551...] - [-0.000...] - [ 0.448...] + [0.551...] + [0.000...] + [0.448...] Player 2 optimal: [0.448...] [0.000...] @@ -900,7 +897,7 @@ class SymmetricLinearGame: >>> e2 = [4,5,6] >>> SLG = SymmetricLinearGame(L, K, e1, e2) >>> print(SLG.solution()) - Game value: 0.0312500 + Game value: 0.031... Player 1 optimal: [0.031...] [0.062...] @@ -936,8 +933,8 @@ class SymmetricLinearGame: >>> print(SLG.solution()) Game value: 18.767... Player 1 optimal: - [-0.000...] - [ 9.766...] + [0.000...] + [9.766...] Player 2 optimal: [1.047...] [0.000...] @@ -954,8 +951,8 @@ class SymmetricLinearGame: >>> print(SLG.solution()) Game value: 24.614... Player 1 optimal: - [ 6.371...] - [-0.000...] + [6.371...] + [0.000...] Player 2 optimal: [2.506...] [0.000...] @@ -969,6 +966,7 @@ class SymmetricLinearGame: self.C().cvxopt_dims(), self.A(), self.b(), + primalstart=self.player1_start(), options=opts) except ValueError as error: if str(error) == 'math domain error':