X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=dunshire%2Fgames.py;h=719198b7007896c0eb68df23ab91d6456888fb12;hb=0f8a3d6c4dc67db51fa8e909339bc61a4cddf635;hp=ae1426a2c611f7e315f94fc5fea0e98f1da0905b;hpb=cd77ba5250ed98ece623730c26af845366847487;p=dunshire.git diff --git a/dunshire/games.py b/dunshire/games.py index ae1426a..719198b 100644 --- a/dunshire/games.py +++ b/dunshire/games.py @@ -13,6 +13,7 @@ from . import options printing.options['dformat'] = options.FLOAT_FORMAT + class Solution: """ A representation of the solution of a linear game. It should contain @@ -976,6 +977,44 @@ class SymmetricLinearGame: [2.506...] [0.000...] + This is another one that was difficult numerically, and caused + trouble even after we fixed the first two:: + + >>> from dunshire import * + >>> L = [[57.22233908627052301199, 41.70631373437460354126], + ... [83.04512571985074487202, 57.82581810406928468637]] + >>> K = NonnegativeOrthant(2) + >>> e1 = [7.31887017043399268346, 0.89744171905822367474] + >>> e2 = [0.11099824781179848388, 6.12564670639315345113] + >>> SLG = SymmetricLinearGame(L,K,e1,e2) + >>> print(SLG.solution()) + Game value: 70.437... + Player 1 optimal: + [9.009...] + [0.000...] + Player 2 optimal: + [0.136...] + [0.000...] + + And finally, here's one that returns an "optimal" solution, but + whose primal/dual objective function values are far apart:: + + >>> from dunshire import * + >>> L = [[ 6.49260076597376212248, -0.60528030227678542019], + ... [ 2.59896077096751731972, -0.97685530240286766457]] + >>> K = IceCream(2) + >>> e1 = [1, 0.43749513972645248661] + >>> e2 = [1, 0.46008379832200291260] + >>> SLG = SymmetricLinearGame(L, K, e1, e2) + >>> print(SLG.solution()) + Game value: 11.596... + Player 1 optimal: + [ 1.852...] + [-1.852...] + Player 2 optimal: + [ 1.777...] + [-1.777...] + """ try: opts = {'show_progress': False} @@ -986,6 +1025,7 @@ class SymmetricLinearGame: self.A(), self.b(), primalstart=self.player1_start(), + dualstart=self.player2_start(), options=opts) except ValueError as error: if str(error) == 'math domain error': @@ -1020,6 +1060,20 @@ class SymmetricLinearGame: printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT raise GameUnsolvableException(self, soln_dict) + # For the game value, we could use any of: + # + # * p1_value + # * p2_value + # * (p1_value + p2_value)/2 + # * the game payoff + # + # We want the game value to be the payoff, however, so it + # makes the most sense to just use that, even if it means we + # can't test the fact that p1_value/p2_value are close to the + # payoff. + payoff = self.payoff(p1_optimal, p2_optimal) + soln = Solution(payoff, p1_optimal, p2_optimal) + # The "optimal" and "unknown" results, we actually treat the # same. Even if CVXOPT bails out due to numerical difficulty, # it will have some candidate points in mind. If those @@ -1030,7 +1084,8 @@ class SymmetricLinearGame: # close enough (one could be low by ABS_TOL, the other high by # it) because otherwise CVXOPT might return "unknown" and give # us two points in the cone that are nowhere near optimal. - if abs(p1_value - p2_value) > 2*options.ABS_TOL: + # + if abs(p1_value - p2_value) > self.epsilon_scale(soln)*options.ABS_TOL: printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT raise GameUnsolvableException(self, soln_dict) @@ -1040,19 +1095,7 @@ class SymmetricLinearGame: printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT raise GameUnsolvableException(self, soln_dict) - # For the game value, we could use any of: - # - # * p1_value - # * p2_value - # * (p1_value + p2_value)/2 - # * the game payoff - # - # We want the game value to be the payoff, however, so it - # makes the most sense to just use that, even if it means we - # can't test the fact that p1_value/p2_value are close to the - # payoff. - payoff = self.payoff(p1_optimal, p2_optimal) - return Solution(payoff, p1_optimal, p2_optimal) + return soln def condition(self):