X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=dunshire%2Fgames.py;h=0a473915716de7f4be4ce7d99cbc64d87c960795;hb=8371d92c42c7faded26d8ef327129ad6d8c72d73;hp=3ed89bb3f2f70b30d0313cbe5a578e4f53e47421;hpb=e41ad668f4f16d8948181ae307cb98430b37ed1d;p=dunshire.git diff --git a/dunshire/games.py b/dunshire/games.py index 3ed89bb..0a47391 100644 --- a/dunshire/games.py +++ b/dunshire/games.py @@ -24,7 +24,7 @@ class Solution: -------- >>> print(Solution(10, matrix([1,2]), matrix([3,4]))) - Game value: 10.0000000 + Game value: 10.000... Player 1 optimal: [ 1] [ 2] @@ -846,6 +846,37 @@ class SymmetricLinearGame: return {'x': x, 's': s} + def player2_start(self): + """ + Return a feasible starting point for player two. + """ + q = self.e1() / (norm(self.e1()) ** 2) + + # Compute the distance from p to the outside of K. + if isinstance(self.K(), NonnegativeOrthant): + # How far is it to a wall? + dist = min(list(self.e2())) + elif isinstance(self.K(), IceCream): + # How far is it to the boundary of the ball that defines + # the ice-cream cone at a given height? Now draw a + # 45-45-90 triangle and the shortest distance to the + # outside of the cone should be 1/sqrt(2) of that. + # It works in R^2, so it works everywhere, right? + height = self.e2()[0] + radius = norm(self.e2()[1:]) + dist = (height - radius) / sqrt(2) + else: + raise NotImplementedError + + omega = specnorm(self.L())/(dist*norm(self.e1())) + y = matrix([omega]) + z2 = q + z1 = y*self.e2() - self.L().trans()*z2 + z = matrix([z1,z2], (self.dimension()*2, 1)) + + return {'y': y, 'z': z} + + def solution(self): """ Solve this linear game and return a :class:`Solution`. @@ -880,11 +911,11 @@ class SymmetricLinearGame: >>> e2 = [1,1,1] >>> SLG = SymmetricLinearGame(L, K, e1, e2) >>> print(SLG.solution()) - Game value: -6.1724138 + Game value: -6.172... Player 1 optimal: - [ 0.551...] - [-0.000...] - [ 0.448...] + [0.551...] + [0.000...] + [0.448...] Player 2 optimal: [0.448...] [0.000...] @@ -900,7 +931,7 @@ class SymmetricLinearGame: >>> e2 = [4,5,6] >>> SLG = SymmetricLinearGame(L, K, e1, e2) >>> print(SLG.solution()) - Game value: 0.0312500 + Game value: 0.031... Player 1 optimal: [0.031...] [0.062...] @@ -936,8 +967,8 @@ class SymmetricLinearGame: >>> print(SLG.solution()) Game value: 18.767... Player 1 optimal: - [-0.000...] - [ 9.766...] + [0.000...] + [9.766...] Player 2 optimal: [1.047...] [0.000...] @@ -954,8 +985,8 @@ class SymmetricLinearGame: >>> print(SLG.solution()) Game value: 24.614... Player 1 optimal: - [ 6.371...] - [-0.000...] + [6.371...] + [0.000...] Player 2 optimal: [2.506...] [0.000...] @@ -969,6 +1000,7 @@ class SymmetricLinearGame: self.C().cvxopt_dims(), self.A(), self.b(), + primalstart=self.player1_start(), options=opts) except ValueError as error: if str(error) == 'math domain error':