X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;f=TODO;h=6ba8caa46d665291faaa07ad4668ee1906c2e1d9;hb=d6e715f5c60d6b39156d3fcca7b1b8b9fb68eddd;hp=e571aeaf6dda586f4d5e217979654a0c515468c6;hpb=0e2a195d7b947aff65893c000292f7742028afdc;p=dunshire.git diff --git a/TODO b/TODO index e571aea..6ba8caa 100644 --- a/TODO +++ b/TODO @@ -8,102 +8,6 @@ 4. Come up with a fast heuristic (like making nu huge and taking e1 as our point) that finds a primal feasible point. -5. Fix the solve failures that we get in the translation tests. For example, - - ERROR: test_translation_orthant (test.symmetric_linear_game_test. - SymmetricLinearGameTest) - ---------------------------------------------------------------------- - Traceback (most recent call last): - File "/home/mjo/src/dunshire/test/symmetric_linear_game_test.py", - line 374, in test_translation_orthant - self.assert_translation_works(L, K, e1, e2) - File "/home/mjo/src/dunshire/test/symmetric_linear_game_test.py", - line 361, in assert_translation_works - value2 = game2.solution().game_value() - File "/home/mjo/src/dunshire/dunshire/games.py", line 458, in solution - raise GameUnsolvableException(self, soln_dict) - dunshire.errors.GameUnsolvableException: Solution failed with result - "unknown." - The linear game (L, K, e1, e2) where - L = [352.0763359 267.0812248 300.8004888 307.8135853] - [429.8303135 324.8322824 361.6866231 372.1748983] - [390.6592961 286.8039007 320.7409227 330.1854235] - [316.0538913 247.7440818 276.9063990 274.9871772], - K = Nonnegative orthant in the real 4-space, - e1 = [7.7040001] - [9.4324457] - [8.3882819] - [6.8908420], - e2 = [8.5054325] - [6.4738132] - [7.2452437] - [7.3307357]. - CVXOPT returned: - dual infeasibility: 0.053819211766446585 - dual objective: -5.369636805607942 - dual slack: 2.105806354638527e-17 - gap: 2.6823510532777825e-16 - iterations: 11 - primal infeasibility: 4.71536776301359e-15 - primal objective: -5.3799616179161 - primal slack: 1.0328930392495263e-17 - relative gap: 4.985818196816016e-17 - residual as dual infeasibility certificate: 0.18587493201993227 - residual as primal infeasibility certificate: None - s: - [0.0115539] - [0.0000000] - [0.0000000] - [0.1230066] - [0.4837410] - [0.0000000] - [0.0000000] - [0.4044349] - status: unknown - x: - [ 5.3799616] - [ 0.0115539] - [-0.0000000] - [-0.0000000] - [ 0.1230066] - y: - [5.3696368] - z: - [0.0000000] - [0.4176330] - [0.6007564] - [0.0000000] - [0.0000000] - [0.0889310] - [0.0191076] - [0.0000000] - - -6. Fix the math domain errors that sometimes pop up: - - ERROR: test_scaling_icecream (test.symmetric_linear_game_test - .SymmetricLinearGameTest) - ---------------------------------------------------------------------- - Traceback (most recent call last): - File "/home/mjo/src/dunshire/test/symmetric_linear_game_test.py", - line 336, in test_scaling_icecream - self.assert_scaling_works(L, K, e1, e2) - File "/home/mjo/src/dunshire/test/symmetric_linear_game_test.py", - line 317, in assert_scaling_works - value2 = game2.solution().game_value() - File "/home/mjo/src/dunshire/dunshire/games.py", line 428, in solution - soln_dict = solvers.conelp(c, G, h, C.cvxopt_dims(), A, b) - File "/usr/lib64/python3.4/site-packages/cvxopt/coneprog.py", line 1395, - in conelp - misc.update_scaling(W, lmbda, ds, dz) - File "/usr/lib64/python3.4/site-packages/cvxopt/misc.py", line 510, - in update_scaling - ln = jnrm2(lmbda, n = m, offset = ind) - File "/usr/lib64/python3.4/site-packages/cvxopt/misc.py", line 856, in jnrm2 - return math.sqrt(x[offset] - a) * math.sqrt(x[offset] + a) - ValueError: math domain error - - 7. Figure out why this happens, too: FAIL: test_scaling_icecream (test.symmetric_linear_game_test @@ -138,4 +42,59 @@ AssertionError: False is not true -8. Fix floating point comparisons in the doctest output. +12. Investigate this test failure too. It looks like it was really + close to being solved, but we would have needed a fudge factor + of three instead of two. + + ERROR: test_positive_operator_value (test.symmetric_linear_game_test + .SymmetricLinearGameTest) + ---------------------------------------------------------------------- + Traceback (most recent call last): + File "/home/mjo/src/dunshire/test/symmetric_linear_game_test.py", + line 550, in test_positive_operator_value + self.assertTrue(G.solution().game_value() >= -options.ABS_TOL) + File "/home/mjo/src/dunshire/dunshire/games.py", line 515, in solution + raise GameUnsolvableException(self, soln_dict) + dunshire.errors.GameUnsolvableException: Solution failed with result + "unknown." + The linear game (L, K, e1, e2) where + L = [8.0814704 3.5584693] + [3.9986814 9.3381562], + K = Nonnegative orthant in the real 2-space, + e1 = [1.3288182] + [0.7458942], + e2 = [0.6814326] + [3.3799082], + Condition((L, K, e1, e2)) = 41.093597. + CVXOPT returned: + dual infeasibility: 2.368640021750079e-06 + dual objective: -7.867137172157051 + dual slack: 1.1314089173606103e-07 + gap: 1.1404410161224882e-06 + iterations: 6 + primal infeasibility: 1.379959981010593e-07 + primal objective: -7.867137449574777 + primal slack: 1.0550559882036034e-08 + relative gap: 1.4496264027827932e-07 + residual as dual infeasibility certificate: 0.12711103707156543 + residual as primal infeasibility certificate: None + s: + [1.4674968] + [0.0000000] + [1.4055364] + [0.0000000] + status: unknown + x: + [ 7.8671374] + [ 1.4674968] + [-0.0000000] + y: + [7.8671372] + z: + [ 0.0000001] + [14.0707905] + [ 0.0000002] + [ 1.3406728] + +13. Add a test to ensure that if we solve the same game twice, we get the + same answer back.