X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;ds=sidebyside;f=mjo%2Feja%2Feja_subalgebra.py;h=8f6e56b55f309d10967ee5aae2bb8b2fe7261566;hb=32723f51147eb6260c8b41549208c851e54a4c56;hp=e39792a91732724b5fc7bc8b352e8fd977c80940;hpb=6d30ad670e205bcfd299835ca67d93d7e1bfc2ec;p=sage.d.git diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index e39792a..8f6e56b 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -137,25 +137,20 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide # First compute the vector subspace spanned by the powers of # the given element. - superalgebra_basis = [self._superalgebra.one()] + powers = [ elt**k for k in range(V.dimension()) ] + power_vectors = [ p.to_vector() for p in powers ] + + # Figure out which powers form a linearly-independent set. + ind_rows = matrix(field, power_vectors).pivot_rows() + + # Pick those out of the list of all powers. + superalgebra_basis = tuple(map(powers.__getitem__, ind_rows)) + # If our superalgebra is a subalgebra of something else, then - # superalgebra.one().to_vector() won't have the right - # coordinates unless we use V.from_vector() below. - basis_vectors = [V.from_vector(self._superalgebra.one().to_vector())] - W = V.span_of_basis(basis_vectors) - for exponent in range(1, V.dimension()): - new_power = elt**exponent - basis_vectors.append( V.from_vector(new_power.to_vector()) ) - try: - W = V.span_of_basis(basis_vectors) - superalgebra_basis.append( new_power ) - except ValueError: - # Vectors weren't independent; bail and keep the - # last subspace that worked. - break - - # Make the basis hashable for UniqueRepresentation. - superalgebra_basis = tuple(superalgebra_basis) + # these vectors won't have the right coordinates for + # V.span_of_basis() unless we use V.from_vector() on them. + basis_vectors = map(power_vectors.__getitem__, ind_rows) + W = V.span_of_basis( V.from_vector(v) for v in basis_vectors ) # Now figure out the entries of the right-multiplication # matrix for the successive basis elements b0, b1,... of @@ -313,6 +308,18 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide return self.monomial(self.one_basis()) + def natural_basis_space(self): + """ + Return the natural basis space of this algebra, which is identical + to that of its superalgebra. + + This is correct "by definition," and avoids a mismatch when the + subalgebra is trivial (with no natural basis to infer anything + from) and the parent is not. + """ + return self.superalgebra().natural_basis_space() + + def superalgebra(self): """ Return the superalgebra that this algebra was generated from. @@ -330,20 +337,20 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide EXAMPLES:: sage: J = RealSymmetricEJA(3) - sage: x = sum( i*J.gens()[i] for i in range(6) ) + sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5) sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x) sage: K.vector_space() - Vector space of degree 6 and dimension 3 over Rational Field + Vector space of degree 6 and dimension 3 over... User basis matrix: [ 1 0 1 0 0 1] - [ 0 1 2 3 4 5] - [10 14 21 19 31 50] + [ 1 0 2 0 0 5] + [ 1 0 4 0 0 25] sage: (x^0).to_vector() (1, 0, 1, 0, 0, 1) sage: (x^1).to_vector() - (0, 1, 2, 3, 4, 5) + (1, 0, 2, 0, 0, 5) sage: (x^2).to_vector() - (10, 14, 21, 19, 31, 50) + (1, 0, 4, 0, 0, 25) """ return self._vector_space