X-Git-Url: http://gitweb.michael.orlitzky.com/?a=blobdiff_plain;ds=sidebyside;f=mjo%2Feja%2Feja_algebra.py;h=725cd7132343ee6f3ba5769d8053aaff32501560;hb=73ba2d67c0850074e655b4da61aa021e6d9b6816;hp=4504362a4f76c66112db8d47c00f8cd42711d305;hpb=1e3bfabaac18a1118fc4afd632265d91d3d0ec6c;p=sage.d.git diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 4504362..725cd71 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -16,12 +16,9 @@ from sage.misc.cachefunc import cached_method from sage.misc.prandom import choice from sage.misc.table import table from sage.modules.free_module import FreeModule, VectorSpace -from sage.rings.integer_ring import ZZ -from sage.rings.number_field.number_field import NumberField, QuadraticField -from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing -from sage.rings.rational_field import QQ -from sage.rings.real_lazy import CLF, RLF - +from sage.rings.all import (ZZ, QQ, RR, RLF, CLF, + PolynomialRing, + QuadraticField) from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement from mjo.eja.eja_utils import _mat2vec @@ -40,11 +37,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): rank, prefix='e', category=None, - natural_basis=None): + natural_basis=None, + check=True): """ SETUP:: - sage: from mjo.eja.eja_algebra import random_eja + sage: from mjo.eja.eja_algebra import (JordanSpinEJA, random_eja) EXAMPLES: @@ -56,7 +54,23 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): sage: x*y == y*x True + TESTS: + + The ``field`` we're given must be real:: + + sage: JordanSpinEJA(2,QQbar) + Traceback (most recent call last): + ... + ValueError: field is not real + """ + if check: + if not field.is_subring(RR): + # Note: this does return true for the real algebraic + # field, and any quadratic field where we've specified + # a real embedding. + raise ValueError('field is not real') + self._rank = rank self._natural_basis = natural_basis @@ -237,7 +251,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): """ (A_of_x, x, xr, detA) = self._charpoly_matrix_system() R = A_of_x.base_ring() - if i >= self.rank(): + + if i == self.rank(): + return R.one() + if i > self.rank(): # Guaranteed by theory return R.zero() @@ -364,8 +381,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): r = self.rank() n = self.dimension() - # The list of coefficient polynomials a_1, a_2, ..., a_n. - a = [ self._charpoly_coeff(i) for i in range(n) ] + # The list of coefficient polynomials a_0, a_1, a_2, ..., a_n. + a = [ self._charpoly_coeff(i) for i in range(r+1) ] # We go to a bit of trouble here to reorder the # indeterminates, so that it's easier to evaluate the @@ -377,17 +394,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): S = PolynomialRing(S, R.variable_names()) t = S(t) - # Note: all entries past the rth should be zero. The - # coefficient of the highest power (x^r) is 1, but it doesn't - # appear in the solution vector which contains coefficients - # for the other powers (to make them sum to x^r). - if (r < n): - a[r] = 1 # corresponds to x^r - else: - # When the rank is equal to the dimension, trying to - # assign a[r] goes out-of-bounds. - a.append(1) # corresponds to x^r - return sum( a[k]*(t**k) for k in xrange(len(a)) ) @@ -435,9 +441,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): sage: J = ComplexHermitianEJA(3) sage: J.is_trivial() False - sage: A = J.zero().subalgebra_generated_by() - sage: A.is_trivial() - True """ return self.dimension() == 0 @@ -611,14 +614,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): return self.linear_combination(zip(self.gens(), coeffs)) - def random_element(self): - # Temporary workaround for https://trac.sagemath.org/ticket/28327 - if self.is_trivial(): - return self.zero() - else: - s = super(FiniteDimensionalEuclideanJordanAlgebra, self) - return s.random_element() - def random_elements(self, count): """ Return ``count`` random elements as a tuple. @@ -683,11 +678,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): TESTS: Ensure that every EJA that we know how to construct has a - positive integer rank:: + positive integer rank, unless the algebra is trivial in + which case its rank will be zero:: sage: set_random_seed() - sage: r = random_eja().rank() - sage: r in ZZ and r > 0 + sage: J = random_eja() + sage: r = J.rank() + sage: r in ZZ + True + sage: r > 0 or (r == 0 and J.is_trivial()) True """ @@ -838,7 +837,7 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra, return x.to_vector().inner_product(y.to_vector()) -def random_eja(): +def random_eja(field=QQ): """ Return a "random" finite-dimensional Euclidean Jordan Algebra. @@ -875,7 +874,7 @@ def random_eja(): """ classname = choice(KnownRankEJA.__subclasses__()) - return classname.random_instance() + return classname.random_instance(field=field) @@ -910,7 +909,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): z = R.gen() p = z**2 - 2 if p.is_irreducible(): - field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt()) + field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt()) basis = tuple( s.change_ring(field) for s in basis ) self._basis_normalizers = tuple( ~(self.natural_inner_product(s,s).sqrt()) for s in basis ) @@ -939,8 +938,9 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): else: basis = ( (b/n) for (b,n) in izip(self.natural_basis(), self._basis_normalizers) ) - field = self.base_ring().base_ring() # yeeeaahhhhhhh - J = MatrixEuclideanJordanAlgebra(field, + + # Do this over the rationals and convert back at the end. + J = MatrixEuclideanJordanAlgebra(QQ, basis, self.rank(), normalize_basis=False) @@ -949,7 +949,14 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): # p might be missing some vars, have to substitute "optionally" pairs = izip(x.base_ring().gens(), self._basis_normalizers) substitutions = { v: v*c for (v,c) in pairs } - return p.subs(substitutions) + result = p.subs(substitutions) + + # The result of "subs" can be either a coefficient-ring + # element or a polynomial. Gotta handle both cases. + if result in QQ: + return self.base_ring()(result) + else: + return result.change_ring(self.base_ring()) @staticmethod @@ -1012,6 +1019,7 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): Xu = cls.real_unembed(X) Yu = cls.real_unembed(Y) tr = (Xu*Yu).trace() + if tr in RLF: # It's real already. return tr @@ -1066,6 +1074,14 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra, KnownRankEJA): sage: e2*e2 e2 + In theory, our "field" can be any subfield of the reals:: + + sage: RealSymmetricEJA(2, AA) + Euclidean Jordan algebra of dimension 3 over Algebraic Real Field + sage: RealSymmetricEJA(2, RR) + Euclidean Jordan algebra of dimension 3 over Real Field with + 53 bits of precision + TESTS: The dimension of this algebra is `(n^2 + n) / 2`:: @@ -1206,15 +1222,17 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): n = M.nrows() if M.ncols() != n: raise ValueError("the matrix 'M' must be square") - field = M.base_ring() + + # We don't need any adjoined elements... + field = M.base_ring().base_ring() + blocks = [] for z in M.list(): - a = z.vector()[0] # real part, I guess - b = z.vector()[1] # imag part, I guess + a = z.list()[0] # real part, I guess + b = z.list()[1] # imag part, I guess blocks.append(matrix(field, 2, [[a,b],[-b,a]])) - # We can drop the imaginaries here. - return matrix.block(field.base_ring(), n, blocks) + return matrix.block(field, n, blocks) @staticmethod @@ -1255,10 +1273,12 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): if not n.mod(2).is_zero(): raise ValueError("the matrix 'M' must be a complex embedding") - field = QQ + # If "M" was normalized, its base ring might have roots + # adjoined and they can stick around after unembedding. + field = M.base_ring() R = PolynomialRing(field, 'z') z = R.gen() - F = NumberField(z**2 + 1,'i', embedding=CLF(-1).sqrt()) + F = field.extension(z**2 + 1, 'i', embedding=CLF(-1).sqrt()) i = F.gen() # Go top-left to bottom-right (reading order), converting every @@ -1319,6 +1339,16 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): sage: from mjo.eja.eja_algebra import ComplexHermitianEJA + EXAMPLES: + + In theory, our "field" can be any subfield of the reals:: + + sage: ComplexHermitianEJA(2, AA) + Euclidean Jordan algebra of dimension 4 over Algebraic Real Field + sage: ComplexHermitianEJA(2, RR) + Euclidean Jordan algebra of dimension 4 over Real Field with + 53 bits of precision + TESTS: The dimension of this algebra is `n^2`:: @@ -1395,9 +1425,9 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra, KnownRankEJA): True """ - R = PolynomialRing(QQ, 'z') + R = PolynomialRing(field, 'z') z = R.gen() - F = NumberField(z**2 + 1, 'I', embedding=CLF(-1).sqrt()) + F = field.extension(z**2 + 1, 'I') I = F.gen() # This is like the symmetric case, but we need to be careful: @@ -1532,7 +1562,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra): if M.ncols() != n: raise ValueError("the matrix 'M' must be square") if not n.mod(4).is_zero(): - raise ValueError("the matrix 'M' must be a complex embedding") + raise ValueError("the matrix 'M' must be a quaternion embedding") # Use the base ring of the matrix to ensure that its entries can be # multiplied by elements of the quaternion algebra. @@ -1604,6 +1634,16 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA + EXAMPLES: + + In theory, our "field" can be any subfield of the reals:: + + sage: QuaternionHermitianEJA(2, AA) + Euclidean Jordan algebra of dimension 6 over Algebraic Real Field + sage: QuaternionHermitianEJA(2, RR) + Euclidean Jordan algebra of dimension 6 over Real Field with + 53 bits of precision + TESTS: The dimension of this algebra is `2*n^2 - n`:: @@ -1704,7 +1744,10 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra, S.append(Sij_J) Sij_K = cls.real_embed(K*Eij - K*Eij.transpose()) S.append(Sij_K) - return S + + # Since we embedded these, we can drop back to the "field" that we + # started with instead of the quaternion algebra "Q". + return ( s.change_ring(field) for s in S ) def __init__(self, n, field=QQ, **kwargs):