]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: add a function to embed complex matrices in (bigger) real ones.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 624806fddac93c9292b229d6afd7954224827e87..fdaccba58a8b99a2f5222054358969ce3e731882 100644 (file)
@@ -5,31 +5,513 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-from sage.structure.unique_representation import UniqueRepresentation
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.structure.element import is_Matrix
+from sage.structure.category_object import normalize_names
+
 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 
 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     @staticmethod
-    def __classcall__(cls, field, mult_table, names='e', category=None):
+    def __classcall_private__(cls,
+                              field,
+                              mult_table,
+                              names='e',
+                              assume_associative=False,
+                              category=None,
+                              rank=None):
+        n = len(mult_table)
+        mult_table = [b.base_extend(field) for b in mult_table]
+        for b in mult_table:
+            b.set_immutable()
+            if not (is_Matrix(b) and b.dimensions() == (n, n)):
+                raise ValueError("input is not a multiplication table")
+        mult_table = tuple(mult_table)
+
+        cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
+        cat.or_subcategory(category)
+        if assume_associative:
+            cat = cat.Associative()
+
+        names = normalize_names(n, names)
+
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall_private__(cls,
-                                         field,
-                                         mult_table,
-                                         names,
-                                         category)
+        return fda.__classcall__(cls,
+                                 field,
+                                 mult_table,
+                                 assume_associative=assume_associative,
+                                 names=names,
+                                 category=cat,
+                                 rank=rank)
+
 
-    def __init__(self, field, mult_table, names='e', category=None):
+    def __init__(self, field,
+                 mult_table,
+                 names='e',
+                 assume_associative=False,
+                 category=None,
+                 rank=None):
+        self._rank = rank
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
-        fda.__init__(field, mult_table, names, category)
+        fda.__init__(field,
+                     mult_table,
+                     names=names,
+                     category=category)
 
 
     def _repr_(self):
         """
         Return a string representation of ``self``.
         """
-        return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring())
+        fmt = "Euclidean Jordan algebra of degree {} over {}"
+        return fmt.format(self.degree(), self.base_ring())
+
+    def rank(self):
+        """
+        Return the rank of this EJA.
+        """
+        if self._rank is None:
+            raise ValueError("no rank specified at genesis")
+        else:
+            return self._rank
+
+
+    class Element(FiniteDimensionalAlgebraElement):
+        """
+        An element of a Euclidean Jordan algebra.
+        """
+
+        def __pow__(self, n):
+            """
+            Return ``self`` raised to the power ``n``.
+
+            Jordan algebras are always power-associative; see for
+            example Faraut and Koranyi, Proposition II.1.2 (ii).
+
+            .. WARNING:
+
+                We have to override this because our superclass uses row vectors
+                instead of column vectors! We, on the other hand, assume column
+                vectors everywhere.
+
+            EXAMPLES:
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.matrix()*x.vector() == (x**2).vector()
+                True
+
+            """
+            A = self.parent()
+            if n == 0:
+                return A.one()
+            elif n == 1:
+                return self
+            else:
+                return A.element_class(A, (self.matrix()**(n-1))*self.vector())
+
+
+        def characteristic_polynomial(self):
+            """
+            Return my characteristic polynomial (if I'm a regular
+            element).
+
+            Eventually this should be implemented in terms of the parent
+            algebra's characteristic polynomial that works for ALL
+            elements.
+            """
+            if self.is_regular():
+                return self.minimal_polynomial()
+            else:
+                raise NotImplementedError('irregular element')
+
+
+        def det(self):
+            """
+            Return my determinant, the product of my eigenvalues.
+
+            EXAMPLES::
+
+                sage: J = eja_ln(2)
+                sage: e0,e1 = J.gens()
+                sage: x = e0 + e1
+                sage: x.det()
+                0
+                sage: J = eja_ln(3)
+                sage: e0,e1,e2 = J.gens()
+                sage: x = e0 + e1 + e2
+                sage: x.det()
+                -1
+
+            """
+            cs = self.characteristic_polynomial().coefficients(sparse=False)
+            r = len(cs) - 1
+            if r >= 0:
+                return cs[0] * (-1)**r
+            else:
+                raise ValueError('charpoly had no coefficients')
+
+
+        def is_nilpotent(self):
+            """
+            Return whether or not some power of this element is zero.
+
+            The superclass method won't work unless we're in an
+            associative algebra, and we aren't. However, we generate
+            an assocoative subalgebra and we're nilpotent there if and
+            only if we're nilpotent here (probably).
+
+            TESTS:
+
+            The identity element is never nilpotent::
+
+                sage: set_random_seed()
+                sage: random_eja().one().is_nilpotent()
+                False
+
+            The additive identity is always nilpotent::
+
+                sage: set_random_seed()
+                sage: random_eja().zero().is_nilpotent()
+                True
+
+            """
+            # The element we're going to call "is_nilpotent()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.is_nilpotent()
+
+
+        def is_regular(self):
+            """
+            Return whether or not this is a regular element.
+
+            EXAMPLES:
+
+            The identity element always has degree one, but any element
+            linearly-independent from it is regular::
+
+                sage: J = eja_ln(5)
+                sage: J.one().is_regular()
+                False
+                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+                sage: for x in J.gens():
+                ....:     (J.one() + x).is_regular()
+                False
+                True
+                True
+                True
+                True
+
+            """
+            return self.degree() == self.parent().rank()
+
+
+        def degree(self):
+            """
+            Compute the degree of this element the straightforward way
+            according to the definition; by appending powers to a list
+            and figuring out its dimension (that is, whether or not
+            they're linearly dependent).
+
+            EXAMPLES::
+
+                sage: J = eja_ln(4)
+                sage: J.one().degree()
+                1
+                sage: e0,e1,e2,e3 = J.gens()
+                sage: (e0 - e1).degree()
+                2
+
+            In the spin factor algebra (of rank two), all elements that
+            aren't multiples of the identity are regular::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10).abs()
+                sage: J = eja_ln(n)
+                sage: x = J.random_element()
+                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+                True
+
+            """
+            return self.span_of_powers().dimension()
+
+
+        def matrix(self):
+            """
+            Return the matrix that represents left- (or right-)
+            multiplication by this element in the parent algebra.
+
+            We have to override this because the superclass method
+            returns a matrix that acts on row vectors (that is, on
+            the right).
+            """
+            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            return fda_elt.matrix().transpose()
+
+
+        def minimal_polynomial(self):
+            """
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.degree() == x.minimal_polynomial().degree()
+                True
+
+            ::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.degree() == x.minimal_polynomial().degree()
+                True
+
+            The minimal polynomial and the characteristic polynomial coincide
+            and are known (see Alizadeh, Example 11.11) for all elements of
+            the spin factor algebra that aren't scalar multiples of the
+            identity::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(2,10).abs()
+                sage: J = eja_ln(n)
+                sage: y = J.random_element()
+                sage: while y == y.coefficient(0)*J.one():
+                ....:     y = J.random_element()
+                sage: y0 = y.vector()[0]
+                sage: y_bar = y.vector()[1:]
+                sage: actual = y.minimal_polynomial()
+                sage: x = SR.symbol('x', domain='real')
+                sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
+                sage: bool(actual == expected)
+                True
+
+            """
+            # The element we're going to call "minimal_polynomial()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.minimal_polynomial()
+
+
+        def quadratic_representation(self):
+            """
+            Return the quadratic representation of this element.
+
+            EXAMPLES:
+
+            The explicit form in the spin factor algebra is given by
+            Alizadeh's Example 11.12::
+
+                sage: n = ZZ.random_element(1,10).abs()
+                sage: J = eja_ln(n)
+                sage: x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+                sage: B = 2*x0*x_bar.row()
+                sage: C = 2*x0*x_bar.column()
+                sage: D = identity_matrix(QQ, n-1)
+                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+                sage: D = D + 2*x_bar.tensor_product(x_bar)
+                sage: Q = block_matrix(2,2,[A,B,C,D])
+                sage: Q == x.quadratic_representation()
+                True
+
+            """
+            return 2*(self.matrix()**2) - (self**2).matrix()
+
+
+        def span_of_powers(self):
+            """
+            Return the vector space spanned by successive powers of
+            this element.
+            """
+            # The dimension of the subalgebra can't be greater than
+            # the big algebra, so just put everything into a list
+            # and let span() get rid of the excess.
+            V = self.vector().parent()
+            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+
+
+        def subalgebra_generated_by(self):
+            """
+            Return the associative subalgebra of the parent EJA generated
+            by this element.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.subalgebra_generated_by().is_associative()
+                True
+
+            Squaring in the subalgebra should be the same thing as
+            squaring in the superalgebra::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: u = x.subalgebra_generated_by().random_element()
+                sage: u.matrix()*u.vector() == (u**2).vector()
+                True
+
+            """
+            # First get the subspace spanned by the powers of myself...
+            V = self.span_of_powers()
+            F = self.base_ring()
+
+            # Now figure out the entries of the right-multiplication
+            # matrix for the successive basis elements b0, b1,... of
+            # that subspace.
+            mats = []
+            for b_right in V.basis():
+                eja_b_right = self.parent()(b_right)
+                b_right_rows = []
+                # The first row of the right-multiplication matrix by
+                # b1 is what we get if we apply that matrix to b1. The
+                # second row of the right multiplication matrix by b1
+                # is what we get when we apply that matrix to b2...
+                #
+                # IMPORTANT: this assumes that all vectors are COLUMN
+                # vectors, unlike our superclass (which uses row vectors).
+                for b_left in V.basis():
+                    eja_b_left = self.parent()(b_left)
+                    # Multiply in the original EJA, but then get the
+                    # coordinates from the subalgebra in terms of its
+                    # basis.
+                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+                    b_right_rows.append(this_row)
+                b_right_matrix = matrix(F, b_right_rows)
+                mats.append(b_right_matrix)
+
+            # It's an algebra of polynomials in one element, and EJAs
+            # are power-associative.
+            #
+            # TODO: choose generator names intelligently.
+            return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
 
 
+        def subalgebra_idempotent(self):
+            """
+            Find an idempotent in the associative subalgebra I generate
+            using Proposition 2.3.5 in Baes.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: J = eja_rn(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+                sage: J = eja_ln(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+
+            """
+            if self.is_nilpotent():
+                raise ValueError("this only works with non-nilpotent elements!")
+
+            V = self.span_of_powers()
+            J = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            u = J(V.coordinates(self.vector()))
+
+            # The image of the matrix of left-u^m-multiplication
+            # will be minimal for some natural number s...
+            s = 0
+            minimal_dim = V.dimension()
+            for i in xrange(1, V.dimension()):
+                this_dim = (u**i).matrix().image().dimension()
+                if this_dim < minimal_dim:
+                    minimal_dim = this_dim
+                    s = i
+
+            # Now minimal_matrix should correspond to the smallest
+            # non-zero subspace in Baes's (or really, Koecher's)
+            # proposition.
+            #
+            # However, we need to restrict the matrix to work on the
+            # subspace... or do we? Can't we just solve, knowing that
+            # A(c) = u^(s+1) should have a solution in the big space,
+            # too?
+            #
+            # Beware, solve_right() means that we're using COLUMN vectors.
+            # Our FiniteDimensionalAlgebraElement superclass uses rows.
+            u_next = u**(s+1)
+            A = u_next.matrix()
+            c_coordinates = A.solve_right(u_next.vector())
+
+            # Now c_coordinates is the idempotent we want, but it's in
+            # the coordinate system of the subalgebra.
+            #
+            # We need the basis for J, but as elements of the parent algebra.
+            #
+            basis = [self.parent(v) for v in V.basis()]
+            return self.parent().linear_combination(zip(c_coordinates, basis))
+
+
+        def trace(self):
+            """
+            Return my trace, the sum of my eigenvalues.
+
+            EXAMPLES::
+
+                sage: J = eja_ln(3)
+                sage: e0,e1,e2 = J.gens()
+                sage: x = e0 + e1 + e2
+                sage: x.trace()
+                2
+
+            """
+            cs = self.characteristic_polynomial().coefficients(sparse=False)
+            if len(cs) >= 2:
+                return -1*cs[-2]
+            else:
+                raise ValueError('charpoly had fewer than 2 coefficients')
+
+
+        def trace_inner_product(self, other):
+            """
+            Return the trace inner product of myself and ``other``.
+            """
+            if not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            return (self*other).trace()
+
 
 def eja_rn(dimension, field=QQ):
     """
@@ -64,10 +546,7 @@ def eja_rn(dimension, field=QQ):
     Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
            for i in xrange(dimension) ]
 
-    # Assuming associativity is wrong here, but it works to
-    # temporarily trick the Jordan algebra constructor into using the
-    # multiplication table.
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
 
 
 def eja_ln(dimension, field=QQ):
@@ -117,4 +596,209 @@ def eja_ln(dimension, field=QQ):
         Qi[0,0] = Qi[0,0] * ~field(2)
         Qs.append(Qi)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)
+    # The rank of the spin factor algebra is two, UNLESS we're in a
+    # one-dimensional ambient space (the rank is bounded by the
+    # ambient dimension).
+    rank = min(dimension,2)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)
+
+
+def eja_sn(dimension, field=QQ):
+    """
+    Return the simple Jordan algebra of ``dimension``-by-``dimension``
+    symmetric matrices over ``field``.
+
+    EXAMPLES::
+
+        sage: J = eja_sn(2)
+        sage: e0, e1, e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e1*e1
+        e0 + e2
+        sage: e2*e2
+        e2
+
+    """
+    S = _real_symmetric_basis(dimension, field=field)
+    Qs = _multiplication_table_from_matrix_basis(S)
+
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
+
+
+def random_eja():
+    """
+    Return a "random" finite-dimensional Euclidean Jordan Algebra.
+
+    ALGORITHM:
+
+    For now, we choose a random natural number ``n`` (greater than zero)
+    and then give you back one of the following:
+
+      * The cartesian product of the rational numbers ``n`` times; this is
+        ``QQ^n`` with the Hadamard product.
+
+      * The Jordan spin algebra on ``QQ^n``.
+
+      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
+        product.
+
+    Later this might be extended to return Cartesian products of the
+    EJAs above.
+
+    TESTS::
+
+        sage: random_eja()
+        Euclidean Jordan algebra of degree...
+
+    """
+    n = ZZ.random_element(1,10).abs()
+    constructor = choice([eja_rn, eja_ln, eja_sn])
+    return constructor(dimension=n, field=QQ)
+
+
+
+def _real_symmetric_basis(n, field=QQ):
+    """
+    Return a basis for the space of real symmetric n-by-n matrices.
+    """
+    # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+    # coordinates.
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = Eij
+            else:
+                # Beware, orthogonal but not normalized!
+                Sij = Eij + Eij.transpose()
+            S.append(Sij)
+    return S
+
+
+def _multiplication_table_from_matrix_basis(basis):
+    """
+    At least three of the five simple Euclidean Jordan algebras have the
+    symmetric multiplication (A,B) |-> (AB + BA)/2, where the
+    multiplication on the right is matrix multiplication. Given a basis
+    for the underlying matrix space, this function returns a
+    multiplication table (obtained by looping through the basis
+    elements) for an algebra of those matrices.
+    """
+    # In S^2, for example, we nominally have four coordinates even
+    # though the space is of dimension three only. The vector space V
+    # is supposed to hold the entire long vector, and the subspace W
+    # of V will be spanned by the vectors that arise from symmetric
+    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+    field = basis[0].base_ring()
+    dimension = basis[0].nrows()
+
+    def mat2vec(m):
+        return vector(field, m.list())
+
+    def vec2mat(v):
+        return matrix(field, dimension, v.list())
+
+    V = VectorSpace(field, dimension**2)
+    W = V.span( mat2vec(s) for s in basis )
+
+    # Taking the span above reorders our basis (thanks, jerk!) so we
+    # need to put our "matrix basis" in the same order as the
+    # (reordered) vector basis.
+    S = [ vec2mat(b) for b in W.basis() ]
+
+    Qs = []
+    for s in basis:
+        # Brute force the multiplication-by-s matrix by looping
+        # through all elements of the basis and doing the computation
+        # to find out what the corresponding row should be. BEWARE:
+        # these multiplication tables won't be symmetric! It therefore
+        # becomes REALLY IMPORTANT that the underlying algebra
+        # constructor uses ROW vectors and not COLUMN vectors. That's
+        # why we're computing rows here and not columns.
+        Q_rows = []
+        for t in basis:
+            this_row = mat2vec((s*t + t*s)/2)
+            Q_rows.append(W.coordinates(this_row))
+        Q = matrix(field,Q_rows)
+        Qs.append(Q)
+
+    return Qs
+
+
+def _embed_complex_matrix(M):
+    """
+    Embed the n-by-n complex matrix ``M`` into the space of real
+    matrices of size 2n-by-2n via the map the sends each entry `z = a +
+    bi` to the block matrix ``[[a,b],[-b,a]]``.
+
+    EXAMPLES::
+
+        sage: F = QuadraticField(-1,'i')
+        sage: x1 = F(4 - 2*i)
+        sage: x2 = F(1 + 2*i)
+        sage: x3 = F(-i)
+        sage: x4 = F(6)
+        sage: M = matrix(F,2,[x1,x2,x3,x4])
+        sage: _embed_complex_matrix(M)
+        [ 4  2| 1 -2]
+        [-2  4| 2  1]
+        [-----+-----]
+        [ 0  1| 6  0]
+        [-1  0| 0  6]
+
+    """
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ArgumentError("the matrix 'M' must be square")
+    field = M.base_ring()
+    blocks = []
+    for z in M.list():
+        a = z.real()
+        b = z.imag()
+        blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
+    return block_matrix(field, n, blocks)
+
+
+def RealSymmetricSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of real symmetric n-by-n
+    matrices, the usual symmetric Jordan product, and the trace inner
+    product. It has dimension `(n^2 + n)/2` over the reals.
+    """
+    pass
+
+def ComplexHermitianSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2 over
+    the reals.
+    """
+    pass
+
+def QuaternionHermitianSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+    matrices, the usual symmetric Jordan product, and the
+    real-part-of-trace inner product. It has dimension `2n^2 - n` over
+    the reals.
+    """
+    pass
+
+def OctonionHermitianSimpleEJA(n):
+    """
+    This shit be crazy. It has dimension 27 over the reals.
+    """
+    n = 3
+    pass
+
+def JordanSpinSimpleEJA(n):
+    """
+    The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+    with the usual inner product and jordan product ``x*y =
+    (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+    the reals.
+    """
+    pass