]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: add a function to embed complex matrices in (bigger) real ones.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 2404af03d7f249fec64caab63e9954aca91af7ab..fdaccba58a8b99a2f5222054358969ce3e731882 100644 (file)
@@ -80,19 +80,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     class Element(FiniteDimensionalAlgebraElement):
         """
         An element of a Euclidean Jordan algebra.
-
-        Since EJAs are commutative, the "right multiplication" matrix is
-        also the left multiplication matrix and must be symmetric::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10).abs()
-            sage: J = eja_rn(5)
-            sage: J.random_element().matrix().is_symmetric()
-            True
-            sage: J = eja_ln(5)
-            sage: J.random_element().matrix().is_symmetric()
-            True
-
         """
 
         def __pow__(self, n):
@@ -111,8 +98,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES:
 
                 sage: set_random_seed()
-                sage: J = eja_ln(5)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.matrix()*x.vector() == (x**2).vector()
                 True
 
@@ -181,23 +167,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The identity element is never nilpotent::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_rn(n)
-                sage: J.one().is_nilpotent()
-                False
-                sage: J = eja_ln(n)
-                sage: J.one().is_nilpotent()
+                sage: random_eja().one().is_nilpotent()
                 False
 
             The additive identity is always nilpotent::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_rn(n)
-                sage: J.zero().is_nilpotent()
-                True
-                sage: J = eja_ln(n)
-                sage: J.zero().is_nilpotent()
+                sage: random_eja().zero().is_nilpotent()
                 True
 
             """
@@ -295,18 +271,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_rn(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.degree() == x.minimal_polynomial().degree()
                 True
 
             ::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_ln(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.degree() == x.minimal_polynomial().degree()
                 True
 
@@ -351,6 +323,35 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return elt.minimal_polynomial()
 
 
+        def quadratic_representation(self):
+            """
+            Return the quadratic representation of this element.
+
+            EXAMPLES:
+
+            The explicit form in the spin factor algebra is given by
+            Alizadeh's Example 11.12::
+
+                sage: n = ZZ.random_element(1,10).abs()
+                sage: J = eja_ln(n)
+                sage: x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+                sage: B = 2*x0*x_bar.row()
+                sage: C = 2*x0*x_bar.column()
+                sage: D = identity_matrix(QQ, n-1)
+                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+                sage: D = D + 2*x_bar.tensor_product(x_bar)
+                sage: Q = block_matrix(2,2,[A,B,C,D])
+                sage: Q == x.quadratic_representation()
+                True
+
+            """
+            return 2*(self.matrix()**2) - (self**2).matrix()
+
+
         def span_of_powers(self):
             """
             Return the vector space spanned by successive powers of
@@ -371,21 +372,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             TESTS::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_rn(n)
-                sage: x = J.random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-                sage: J = eja_ln(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.subalgebra_generated_by().is_associative()
                 True
 
             Squaring in the subalgebra should be the same thing as
             squaring in the superalgebra::
 
-                sage: J = eja_ln(5)
-                sage: x = J.random_element()
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
                 sage: u = x.subalgebra_generated_by().random_element()
                 sage: u.matrix()*u.vector() == (u**2).vector()
                 True
@@ -508,6 +503,16 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise ValueError('charpoly had fewer than 2 coefficients')
 
 
+        def trace_inner_product(self, other):
+            """
+            Return the trace inner product of myself and ``other``.
+            """
+            if not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            return (self*other).trace()
+
+
 def eja_rn(dimension, field=QQ):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
@@ -596,3 +601,204 @@ def eja_ln(dimension, field=QQ):
     # ambient dimension).
     rank = min(dimension,2)
     return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)
+
+
+def eja_sn(dimension, field=QQ):
+    """
+    Return the simple Jordan algebra of ``dimension``-by-``dimension``
+    symmetric matrices over ``field``.
+
+    EXAMPLES::
+
+        sage: J = eja_sn(2)
+        sage: e0, e1, e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e1*e1
+        e0 + e2
+        sage: e2*e2
+        e2
+
+    """
+    S = _real_symmetric_basis(dimension, field=field)
+    Qs = _multiplication_table_from_matrix_basis(S)
+
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
+
+
+def random_eja():
+    """
+    Return a "random" finite-dimensional Euclidean Jordan Algebra.
+
+    ALGORITHM:
+
+    For now, we choose a random natural number ``n`` (greater than zero)
+    and then give you back one of the following:
+
+      * The cartesian product of the rational numbers ``n`` times; this is
+        ``QQ^n`` with the Hadamard product.
+
+      * The Jordan spin algebra on ``QQ^n``.
+
+      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
+        product.
+
+    Later this might be extended to return Cartesian products of the
+    EJAs above.
+
+    TESTS::
+
+        sage: random_eja()
+        Euclidean Jordan algebra of degree...
+
+    """
+    n = ZZ.random_element(1,10).abs()
+    constructor = choice([eja_rn, eja_ln, eja_sn])
+    return constructor(dimension=n, field=QQ)
+
+
+
+def _real_symmetric_basis(n, field=QQ):
+    """
+    Return a basis for the space of real symmetric n-by-n matrices.
+    """
+    # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+    # coordinates.
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = Eij
+            else:
+                # Beware, orthogonal but not normalized!
+                Sij = Eij + Eij.transpose()
+            S.append(Sij)
+    return S
+
+
+def _multiplication_table_from_matrix_basis(basis):
+    """
+    At least three of the five simple Euclidean Jordan algebras have the
+    symmetric multiplication (A,B) |-> (AB + BA)/2, where the
+    multiplication on the right is matrix multiplication. Given a basis
+    for the underlying matrix space, this function returns a
+    multiplication table (obtained by looping through the basis
+    elements) for an algebra of those matrices.
+    """
+    # In S^2, for example, we nominally have four coordinates even
+    # though the space is of dimension three only. The vector space V
+    # is supposed to hold the entire long vector, and the subspace W
+    # of V will be spanned by the vectors that arise from symmetric
+    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+    field = basis[0].base_ring()
+    dimension = basis[0].nrows()
+
+    def mat2vec(m):
+        return vector(field, m.list())
+
+    def vec2mat(v):
+        return matrix(field, dimension, v.list())
+
+    V = VectorSpace(field, dimension**2)
+    W = V.span( mat2vec(s) for s in basis )
+
+    # Taking the span above reorders our basis (thanks, jerk!) so we
+    # need to put our "matrix basis" in the same order as the
+    # (reordered) vector basis.
+    S = [ vec2mat(b) for b in W.basis() ]
+
+    Qs = []
+    for s in basis:
+        # Brute force the multiplication-by-s matrix by looping
+        # through all elements of the basis and doing the computation
+        # to find out what the corresponding row should be. BEWARE:
+        # these multiplication tables won't be symmetric! It therefore
+        # becomes REALLY IMPORTANT that the underlying algebra
+        # constructor uses ROW vectors and not COLUMN vectors. That's
+        # why we're computing rows here and not columns.
+        Q_rows = []
+        for t in basis:
+            this_row = mat2vec((s*t + t*s)/2)
+            Q_rows.append(W.coordinates(this_row))
+        Q = matrix(field,Q_rows)
+        Qs.append(Q)
+
+    return Qs
+
+
+def _embed_complex_matrix(M):
+    """
+    Embed the n-by-n complex matrix ``M`` into the space of real
+    matrices of size 2n-by-2n via the map the sends each entry `z = a +
+    bi` to the block matrix ``[[a,b],[-b,a]]``.
+
+    EXAMPLES::
+
+        sage: F = QuadraticField(-1,'i')
+        sage: x1 = F(4 - 2*i)
+        sage: x2 = F(1 + 2*i)
+        sage: x3 = F(-i)
+        sage: x4 = F(6)
+        sage: M = matrix(F,2,[x1,x2,x3,x4])
+        sage: _embed_complex_matrix(M)
+        [ 4  2| 1 -2]
+        [-2  4| 2  1]
+        [-----+-----]
+        [ 0  1| 6  0]
+        [-1  0| 0  6]
+
+    """
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ArgumentError("the matrix 'M' must be square")
+    field = M.base_ring()
+    blocks = []
+    for z in M.list():
+        a = z.real()
+        b = z.imag()
+        blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
+    return block_matrix(field, n, blocks)
+
+
+def RealSymmetricSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of real symmetric n-by-n
+    matrices, the usual symmetric Jordan product, and the trace inner
+    product. It has dimension `(n^2 + n)/2` over the reals.
+    """
+    pass
+
+def ComplexHermitianSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2 over
+    the reals.
+    """
+    pass
+
+def QuaternionHermitianSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+    matrices, the usual symmetric Jordan product, and the
+    real-part-of-trace inner product. It has dimension `2n^2 - n` over
+    the reals.
+    """
+    pass
+
+def OctonionHermitianSimpleEJA(n):
+    """
+    This shit be crazy. It has dimension 27 over the reals.
+    """
+    n = 3
+    pass
+
+def JordanSpinSimpleEJA(n):
+    """
+    The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+    with the usual inner product and jordan product ``x*y =
+    (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+    the reals.
+    """
+    pass