]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: rename matrix() to operator_matrix().
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index a1102461714c43e318130052669fb898d218914e..e2d644a903d8eca09a585064f96e31278197e4d6 100644 (file)
@@ -52,6 +52,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                  assume_associative=False,
                  category=None,
                  rank=None):
+        """
+        EXAMPLES:
+
+        By definition, Jordan multiplication commutes::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x*y == y*x
+            True
+
+        """
         self._rank = rank
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
@@ -95,11 +108,32 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 instead of column vectors! We, on the other hand, assume column
                 vectors everywhere.
 
-            EXAMPLES:
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_matrix()*x.vector() == (x^2).vector()
+                True
+
+            A few examples of power-associativity::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x*(x*x)*(x*x) == x^5
+                True
+                sage: (x*x)*(x*x*x) == x^5
+                True
+
+            We also know that powers operator-commute (Koecher, Chapter
+            III, Corollary 1)::
 
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
-                sage: x.matrix()*x.vector() == (x**2).vector()
+                sage: m = ZZ.random_element(0,10)
+                sage: n = ZZ.random_element(0,10)
+                sage: Lxm = (x^m).operator_matrix()
+                sage: Lxn = (x^n).operator_matrix()
+                sage: Lxm*Lxn == Lxn*Lxm
                 True
 
             """
@@ -109,7 +143,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             elif n == 1:
                 return self
             else:
-                return A.element_class(A, (self.matrix()**(n-1))*self.vector())
+                return A( (self.operator_matrix()**(n-1))*self.vector() )
 
 
         def characteristic_polynomial(self):
@@ -127,6 +161,43 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise NotImplementedError('irregular element')
 
 
+        def operator_commutes_with(self, other):
+            """
+            Return whether or not this element operator-commutes
+            with ``other``.
+
+            EXAMPLES:
+
+            The definition of a Jordan algebra says that any element
+            operator-commutes with its square::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_commutes_with(x^2)
+                True
+
+            TESTS:
+
+            Test Lemma 1 from Chapter III of Koecher::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: v = J.random_element()
+                sage: lhs = u.operator_commutes_with(u*v)
+                sage: rhs = v.operator_commutes_with(u^2)
+                sage: lhs == rhs
+                True
+
+            """
+            if not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            A = self.operator_matrix()
+            B = other.operator_matrix()
+            return (A*B == B*A)
+
+
         def det(self):
             """
             Return my determinant, the product of my eigenvalues.
@@ -166,7 +237,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Example 11.11::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: while x.is_zero():
@@ -333,7 +404,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             aren't multiples of the identity are regular::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
@@ -343,7 +414,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return self.span_of_powers().dimension()
 
 
-        def matrix(self):
+        def operator_matrix(self):
             """
             Return the matrix that represents left- (or right-)
             multiplication by this element in the parent algebra.
@@ -351,11 +422,66 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             We have to override this because the superclass method
             returns a matrix that acts on row vectors (that is, on
             the right).
+
+            EXAMPLES:
+
+            Test the first polarization identity from my notes, Koecher Chapter
+            III, or from Baes (2.3)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lxx = (x*x).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
+                True
+
+            Test the second polarization identity from my notes or from
+            Baes (2.4)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: Lxz = (x*z).operator_matrix()
+                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
+                True
+
+            Test the third polarization identity from my notes or from
+            Baes (2.5)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lu = u.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Luy = (u*y).operator_matrix()
+                sage: Luz = (u*z).operator_matrix()
+                sage: Luyz = (u*(y*z)).operator_matrix()
+                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+                sage: bool(lhs == rhs)
+                True
+
             """
             fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
             return fda_elt.matrix().transpose()
 
 
+
         def minimal_polynomial(self):
             """
             EXAMPLES::
@@ -378,7 +504,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             identity::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
+                sage: n = ZZ.random_element(2,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: y = J.random_element()
                 sage: while y == y.coefficient(0)*J.one():
@@ -423,7 +549,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Alizadeh's Example 11.12::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x_vec = x.vector()
@@ -473,7 +599,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             Property 6:
 
-                sage: k = ZZ.random_element(1,10).abs()
+                sage: k = ZZ.random_element(1,10)
                 sage: actual = (x^k).quadratic_representation()
                 sage: expected = (x.quadratic_representation())^k
                 sage: actual == expected
@@ -485,9 +611,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             elif not other in self.parent():
                 raise ArgumentError("'other' must live in the same algebra")
 
-            return ( self.matrix()*other.matrix()
-                       + other.matrix()*self.matrix()
-                       - (self*other).matrix() )
+            L = self.operator_matrix()
+            M = other.operator_matrix()
+            return ( L*M + M*L - (self*other).operator_matrix() )
 
 
         def span_of_powers(self):
@@ -520,7 +646,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
                 sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.matrix()*u.vector() == (u**2).vector()
+                sage: u.operator_matrix()*u.vector() == (u**2).vector()
                 True
 
             """
@@ -592,7 +718,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             s = 0
             minimal_dim = V.dimension()
             for i in xrange(1, V.dimension()):
-                this_dim = (u**i).matrix().image().dimension()
+                this_dim = (u**i).operator_matrix().image().dimension()
                 if this_dim < minimal_dim:
                     minimal_dim = this_dim
                     s = i
@@ -609,7 +735,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             # Beware, solve_right() means that we're using COLUMN vectors.
             # Our FiniteDimensionalAlgebraElement superclass uses rows.
             u_next = u**(s+1)
-            A = u_next.matrix()
+            A = u_next.operator_matrix()
             c_coordinates = A.solve_right(u_next.vector())
 
             # Now c_coordinates is the idempotent we want, but it's in
@@ -714,7 +840,7 @@ def random_eja():
         Euclidean Jordan algebra of degree...
 
     """
-    n = ZZ.random_element(1,5).abs()
+    n = ZZ.random_element(1,5)
     constructor = choice([eja_rn,
                           JordanSpinSimpleEJA,
                           RealSymmetricSimpleEJA,
@@ -749,7 +875,7 @@ def _complex_hermitian_basis(n, field=QQ):
     TESTS::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
         True
 
@@ -926,7 +1052,7 @@ def RealSymmetricSimpleEJA(n, field=QQ):
     The degree of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: J = RealSymmetricSimpleEJA(n)
         sage: J.degree() == (n^2 + n)/2
         True
@@ -950,7 +1076,7 @@ def ComplexHermitianSimpleEJA(n, field=QQ):
     The degree of this algebra is `n^2`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: J = ComplexHermitianSimpleEJA(n)
         sage: J.degree() == n^2
         True