]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: fix the dimension of the complex Hermitian simple EJA.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index c47f4003690905278904327e63ddaf7dcf9e0b44..d6235d33ee2edd77f24d1b304e8d4d80b4342d9f 100644 (file)
@@ -80,19 +80,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     class Element(FiniteDimensionalAlgebraElement):
         """
         An element of a Euclidean Jordan algebra.
-
-        Since EJAs are commutative, the "right multiplication" matrix is
-        also the left multiplication matrix and must be symmetric::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10).abs()
-            sage: J = eja_rn(5)
-            sage: J.random_element().matrix().is_symmetric()
-            True
-            sage: J = eja_ln(5)
-            sage: J.random_element().matrix().is_symmetric()
-            True
-
         """
 
         def __pow__(self, n):
@@ -111,8 +98,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES:
 
                 sage: set_random_seed()
-                sage: J = eja_ln(5)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.matrix()*x.vector() == (x**2).vector()
                 True
 
@@ -147,12 +133,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = eja_ln(2)
+                sage: J = JordanSpinSimpleEJA(2)
                 sage: e0,e1 = J.gens()
                 sage: x = e0 + e1
                 sage: x.det()
                 0
-                sage: J = eja_ln(3)
+                sage: J = JordanSpinSimpleEJA(3)
                 sage: e0,e1,e2 = J.gens()
                 sage: x = e0 + e1 + e2
                 sage: x.det()
@@ -181,23 +167,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The identity element is never nilpotent::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_rn(n)
-                sage: J.one().is_nilpotent()
-                False
-                sage: J = eja_ln(n)
-                sage: J.one().is_nilpotent()
+                sage: random_eja().one().is_nilpotent()
                 False
 
             The additive identity is always nilpotent::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_rn(n)
-                sage: J.zero().is_nilpotent()
-                True
-                sage: J = eja_ln(n)
-                sage: J.zero().is_nilpotent()
+                sage: random_eja().zero().is_nilpotent()
                 True
 
             """
@@ -231,7 +207,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The identity element always has degree one, but any element
             linearly-independent from it is regular::
 
-                sage: J = eja_ln(5)
+                sage: J = JordanSpinSimpleEJA(5)
                 sage: J.one().is_regular()
                 False
                 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
@@ -256,7 +232,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = eja_ln(4)
+                sage: J = JordanSpinSimpleEJA(4)
                 sage: J.one().degree()
                 1
                 sage: e0,e1,e2,e3 = J.gens()
@@ -268,7 +244,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_ln(n)
+                sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
                 True
@@ -295,18 +271,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_rn(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.degree() == x.minimal_polynomial().degree()
                 True
 
             ::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_ln(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.degree() == x.minimal_polynomial().degree()
                 True
 
@@ -317,7 +289,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_ln(n)
+                sage: J = JordanSpinSimpleEJA(n)
                 sage: y = J.random_element()
                 sage: while y == y.coefficient(0)*J.one():
                 ....:     y = J.random_element()
@@ -351,6 +323,35 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return elt.minimal_polynomial()
 
 
+        def quadratic_representation(self):
+            """
+            Return the quadratic representation of this element.
+
+            EXAMPLES:
+
+            The explicit form in the spin factor algebra is given by
+            Alizadeh's Example 11.12::
+
+                sage: n = ZZ.random_element(1,10).abs()
+                sage: J = JordanSpinSimpleEJA(n)
+                sage: x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+                sage: B = 2*x0*x_bar.row()
+                sage: C = 2*x0*x_bar.column()
+                sage: D = identity_matrix(QQ, n-1)
+                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+                sage: D = D + 2*x_bar.tensor_product(x_bar)
+                sage: Q = block_matrix(2,2,[A,B,C,D])
+                sage: Q == x.quadratic_representation()
+                True
+
+            """
+            return 2*(self.matrix()**2) - (self**2).matrix()
+
+
         def span_of_powers(self):
             """
             Return the vector space spanned by successive powers of
@@ -371,21 +372,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             TESTS::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_rn(n)
-                sage: x = J.random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-                sage: J = eja_ln(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.subalgebra_generated_by().is_associative()
                 True
 
             Squaring in the subalgebra should be the same thing as
             squaring in the superalgebra::
 
-                sage: J = eja_ln(5)
-                sage: x = J.random_element()
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
                 sage: u = x.subalgebra_generated_by().random_element()
                 sage: u.matrix()*u.vector() == (u**2).vector()
                 True
@@ -438,7 +433,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
-                sage: J = eja_ln(5)
+                sage: J = JordanSpinSimpleEJA(5)
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
@@ -494,7 +489,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = eja_ln(3)
+                sage: J = JordanSpinSimpleEJA(3)
                 sage: e0,e1,e2 = J.gens()
                 sage: x = e0 + e1 + e2
                 sage: x.trace()
@@ -508,6 +503,16 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise ValueError('charpoly had fewer than 2 coefficients')
 
 
+        def trace_inner_product(self, other):
+            """
+            Return the trace inner product of myself and ``other``.
+            """
+            if not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            return (self*other).trace()
+
+
 def eja_rn(dimension, field=QQ):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
@@ -544,104 +549,130 @@ def eja_rn(dimension, field=QQ):
     return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
 
 
-def eja_ln(dimension, field=QQ):
+
+def random_eja():
     """
-    Return the Jordan algebra corresponding to the Lorentz "ice cream"
-    cone of the given ``dimension``.
+    Return a "random" finite-dimensional Euclidean Jordan Algebra.
 
-    EXAMPLES:
+    ALGORITHM:
 
-    This multiplication table can be verified by hand::
+    For now, we choose a random natural number ``n`` (greater than zero)
+    and then give you back one of the following:
 
-        sage: J = eja_ln(4)
-        sage: e0,e1,e2,e3 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        e1
-        sage: e0*e2
-        e2
-        sage: e0*e3
-        e3
-        sage: e1*e2
-        0
-        sage: e1*e3
-        0
-        sage: e2*e3
-        0
+      * The cartesian product of the rational numbers ``n`` times; this is
+        ``QQ^n`` with the Hadamard product.
 
-    In one dimension, this is the reals under multiplication::
+      * The Jordan spin algebra on ``QQ^n``.
 
-      sage: J1 = eja_ln(1)
-      sage: J2 = eja_rn(1)
-      sage: J1 == J2
-      True
+      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
+        product.
 
-    """
-    Qs = []
-    id_matrix = identity_matrix(field,dimension)
-    for i in xrange(dimension):
-        ei = id_matrix.column(i)
-        Qi = zero_matrix(field,dimension)
-        Qi.set_row(0, ei)
-        Qi.set_column(0, ei)
-        Qi += diagonal_matrix(dimension, [ei[0]]*dimension)
-        # The addition of the diagonal matrix adds an extra ei[0] in the
-        # upper-left corner of the matrix.
-        Qi[0,0] = Qi[0,0] * ~field(2)
-        Qs.append(Qi)
+    Later this might be extended to return Cartesian products of the
+    EJAs above.
 
-    # The rank of the spin factor algebra is two, UNLESS we're in a
-    # one-dimensional ambient space (the rank is bounded by the
-    # ambient dimension).
-    rank = min(dimension,2)
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)
+    TESTS::
 
+        sage: random_eja()
+        Euclidean Jordan algebra of degree...
 
-def eja_sn(dimension, field=QQ):
     """
-    Return the simple Jordan algebra of ``dimension``-by-``dimension``
-    symmetric matrices over ``field``.
+    n = ZZ.random_element(1,5).abs()
+    constructor = choice([eja_rn,
+                          JordanSpinSimpleEJA,
+                          RealSymmetricSimpleEJA,
+                          ComplexHermitianSimpleEJA])
+    return constructor(n, field=QQ)
 
-    EXAMPLES::
 
-        sage: J = eja_sn(2)
-        sage: e0, e1, e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e1*e1
-        e0 + e2
-        sage: e2*e2
-        e2
 
+def _real_symmetric_basis(n, field=QQ):
+    """
+    Return a basis for the space of real symmetric n-by-n matrices.
     """
-    Qs = []
-
-    # In S^2, for example, we nominally have four coordinates even
-    # though the space is of dimension three only. The vector space V
-    # is supposed to hold the entire long vector, and the subspace W
-    # of V will be spanned by the vectors that arise from symmetric
-    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
-    V = VectorSpace(field, dimension**2)
-
     # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
     # coordinates.
     S = []
-
-    for i in xrange(dimension):
+    for i in xrange(n):
         for j in xrange(i+1):
-            Eij = matrix(field, dimension, lambda k,l: k==i and l==j)
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
             if i == j:
                 Sij = Eij
             else:
+                # Beware, orthogonal but not normalized!
                 Sij = Eij + Eij.transpose()
             S.append(Sij)
+    return S
+
+
+def _complex_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of complex Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5).abs()
+        sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
+        True
+
+    """
+    F = QuadraticField(-1, 'I')
+    I = F.gen()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_complex_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second one
+                # has a minus because it's conjugated.
+                Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_imag)
+    return S
+
+
+def _multiplication_table_from_matrix_basis(basis):
+    """
+    At least three of the five simple Euclidean Jordan algebras have the
+    symmetric multiplication (A,B) |-> (AB + BA)/2, where the
+    multiplication on the right is matrix multiplication. Given a basis
+    for the underlying matrix space, this function returns a
+    multiplication table (obtained by looping through the basis
+    elements) for an algebra of those matrices.
+    """
+    # In S^2, for example, we nominally have four coordinates even
+    # though the space is of dimension three only. The vector space V
+    # is supposed to hold the entire long vector, and the subspace W
+    # of V will be spanned by the vectors that arise from symmetric
+    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+    field = basis[0].base_ring()
+    dimension = basis[0].nrows()
 
     def mat2vec(m):
         return vector(field, m.list())
 
-    W = V.span( mat2vec(s) for s in S )
+    def vec2mat(v):
+        return matrix(field, dimension, v.list())
 
+    V = VectorSpace(field, dimension**2)
+    W = V.span( mat2vec(s) for s in basis )
+
+    # Taking the span above reorders our basis (thanks, jerk!) so we
+    # need to put our "matrix basis" in the same order as the
+    # (reordered) vector basis.
+    S = [ vec2mat(b) for b in W.basis() ]
+
+    Qs = []
     for s in S:
         # Brute force the multiplication-by-s matrix by looping
         # through all elements of the basis and doing the computation
@@ -654,7 +685,210 @@ def eja_sn(dimension, field=QQ):
         for t in S:
             this_row = mat2vec((s*t + t*s)/2)
             Q_rows.append(W.coordinates(this_row))
-        Q = matrix(field,Q_rows)
+        Q = matrix(field, W.dimension(), Q_rows)
         Qs.append(Q)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
+    return Qs
+
+
+def _embed_complex_matrix(M):
+    """
+    Embed the n-by-n complex matrix ``M`` into the space of real
+    matrices of size 2n-by-2n via the map the sends each entry `z = a +
+    bi` to the block matrix ``[[a,b],[-b,a]]``.
+
+    EXAMPLES::
+
+        sage: F = QuadraticField(-1,'i')
+        sage: x1 = F(4 - 2*i)
+        sage: x2 = F(1 + 2*i)
+        sage: x3 = F(-i)
+        sage: x4 = F(6)
+        sage: M = matrix(F,2,[x1,x2,x3,x4])
+        sage: _embed_complex_matrix(M)
+        [ 4  2| 1 -2]
+        [-2  4| 2  1]
+        [-----+-----]
+        [ 0  1| 6  0]
+        [-1  0| 0  6]
+
+    """
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ArgumentError("the matrix 'M' must be square")
+    field = M.base_ring()
+    blocks = []
+    for z in M.list():
+        a = z.real()
+        b = z.imag()
+        blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
+
+    # We can drop the imaginaries here.
+    return block_matrix(field.base_ring(), n, blocks)
+
+
+def _unembed_complex_matrix(M):
+    """
+    The inverse of _embed_complex_matrix().
+
+    EXAMPLES::
+
+        sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
+        ....:                 [-2,  1,  -4,  3],
+        ....:                 [ 9,  10, 11, 12],
+        ....:                 [-10, 9, -12, 11] ])
+        sage: _unembed_complex_matrix(A)
+        [  -2*i + 1   -4*i + 3]
+        [ -10*i + 9 -12*i + 11]
+    """
+    n = ZZ(M.nrows())
+    if M.ncols() != n:
+        raise ArgumentError("the matrix 'M' must be square")
+    if not n.mod(2).is_zero():
+        raise ArgumentError("the matrix 'M' must be a complex embedding")
+
+    F = QuadraticField(-1, 'i')
+    i = F.gen()
+
+    # Go top-left to bottom-right (reading order), converting every
+    # 2-by-2 block we see to a single complex element.
+    elements = []
+    for k in xrange(n/2):
+        for j in xrange(n/2):
+            submat = M[2*k:2*k+2,2*j:2*j+2]
+            if submat[0,0] != submat[1,1]:
+                raise ArgumentError('bad real submatrix')
+            if submat[0,1] != -submat[1,0]:
+                raise ArgumentError('bad imag submatrix')
+            z = submat[0,0] + submat[1,0]*i
+            elements.append(z)
+
+    return matrix(F, n/2, elements)
+
+
+def RealSymmetricSimpleEJA(n, field=QQ):
+    """
+    The rank-n simple EJA consisting of real symmetric n-by-n
+    matrices, the usual symmetric Jordan product, and the trace inner
+    product. It has dimension `(n^2 + n)/2` over the reals.
+
+    EXAMPLES::
+
+        sage: J = RealSymmetricSimpleEJA(2)
+        sage: e0, e1, e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e1*e1
+        e0 + e2
+        sage: e2*e2
+        e2
+
+    TESTS:
+
+    The degree of this algebra is `(n^2 + n) / 2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5).abs()
+        sage: J = RealSymmetricSimpleEJA(n)
+        sage: J.degree() == (n^2 + n)/2
+        True
+
+    """
+    S = _real_symmetric_basis(n, field=field)
+    Qs = _multiplication_table_from_matrix_basis(S)
+
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
+
+
+def ComplexHermitianSimpleEJA(n, field=QQ):
+    """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2` over
+    the reals.
+
+    TESTS:
+
+    The degree of this algebra is `n^2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5).abs()
+        sage: J = ComplexHermitianSimpleEJA(n)
+        sage: J.degree() == n^2
+        True
+
+    """
+    S = _complex_hermitian_basis(n)
+    Qs = _multiplication_table_from_matrix_basis(S)
+    return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
+
+
+def QuaternionHermitianSimpleEJA(n):
+    """
+    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+    matrices, the usual symmetric Jordan product, and the
+    real-part-of-trace inner product. It has dimension `2n^2 - n` over
+    the reals.
+    """
+    pass
+
+def OctonionHermitianSimpleEJA(n):
+    """
+    This shit be crazy. It has dimension 27 over the reals.
+    """
+    n = 3
+    pass
+
+def JordanSpinSimpleEJA(n, field=QQ):
+    """
+    The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+    with the usual inner product and jordan product ``x*y =
+    (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+    the reals.
+
+    EXAMPLES:
+
+    This multiplication table can be verified by hand::
+
+        sage: J = JordanSpinSimpleEJA(4)
+        sage: e0,e1,e2,e3 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e0*e1
+        e1
+        sage: e0*e2
+        e2
+        sage: e0*e3
+        e3
+        sage: e1*e2
+        0
+        sage: e1*e3
+        0
+        sage: e2*e3
+        0
+
+    In one dimension, this is the reals under multiplication::
+
+      sage: J1 = JordanSpinSimpleEJA(1)
+      sage: J2 = eja_rn(1)
+      sage: J1 == J2
+      True
+
+    """
+    Qs = []
+    id_matrix = identity_matrix(field, n)
+    for i in xrange(n):
+        ei = id_matrix.column(i)
+        Qi = zero_matrix(field, n)
+        Qi.set_row(0, ei)
+        Qi.set_column(0, ei)
+        Qi += diagonal_matrix(n, [ei[0]]*n)
+        # The addition of the diagonal matrix adds an extra ei[0] in the
+        # upper-left corner of the matrix.
+        Qi[0,0] = Qi[0,0] * ~field(2)
+        Qs.append(Qi)
+
+    # The rank of the spin factor algebra is two, UNLESS we're in a
+    # one-dimensional ambient space (the rank is bounded by the
+    # ambient dimension).
+    return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2))