]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: add quadratic_representation() for elements.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index ef5249bc6abe4f9d4dd62bf0f5de07caa85fed26..d07425f6516e0261030afc3052ddbfd8660e6722 100644 (file)
@@ -80,19 +80,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     class Element(FiniteDimensionalAlgebraElement):
         """
         An element of a Euclidean Jordan algebra.
-
-        Since EJAs are commutative, the "right multiplication" matrix is
-        also the left multiplication matrix and must be symmetric::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10).abs()
-            sage: J = eja_rn(5)
-            sage: J.random_element().matrix().is_symmetric()
-            True
-            sage: J = eja_ln(5)
-            sage: J.random_element().matrix().is_symmetric()
-            True
-
         """
 
         def __pow__(self, n):
@@ -111,8 +98,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES:
 
                 sage: set_random_seed()
-                sage: J = eja_ln(5)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.matrix()*x.vector() == (x**2).vector()
                 True
 
@@ -126,16 +112,115 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 return A.element_class(A, (self.matrix()**(n-1))*self.vector())
 
 
-        def span_of_powers(self):
+        def characteristic_polynomial(self):
             """
-            Return the vector space spanned by successive powers of
-            this element.
+            Return my characteristic polynomial (if I'm a regular
+            element).
+
+            Eventually this should be implemented in terms of the parent
+            algebra's characteristic polynomial that works for ALL
+            elements.
             """
-            # The dimension of the subalgebra can't be greater than
-            # the big algebra, so just put everything into a list
-            # and let span() get rid of the excess.
-            V = self.vector().parent()
-            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+            if self.is_regular():
+                return self.minimal_polynomial()
+            else:
+                raise NotImplementedError('irregular element')
+
+
+        def det(self):
+            """
+            Return my determinant, the product of my eigenvalues.
+
+            EXAMPLES::
+
+                sage: J = eja_ln(2)
+                sage: e0,e1 = J.gens()
+                sage: x = e0 + e1
+                sage: x.det()
+                0
+                sage: J = eja_ln(3)
+                sage: e0,e1,e2 = J.gens()
+                sage: x = e0 + e1 + e2
+                sage: x.det()
+                -1
+
+            """
+            cs = self.characteristic_polynomial().coefficients(sparse=False)
+            r = len(cs) - 1
+            if r >= 0:
+                return cs[0] * (-1)**r
+            else:
+                raise ValueError('charpoly had no coefficients')
+
+
+        def is_nilpotent(self):
+            """
+            Return whether or not some power of this element is zero.
+
+            The superclass method won't work unless we're in an
+            associative algebra, and we aren't. However, we generate
+            an assocoative subalgebra and we're nilpotent there if and
+            only if we're nilpotent here (probably).
+
+            TESTS:
+
+            The identity element is never nilpotent::
+
+                sage: set_random_seed()
+                sage: random_eja().one().is_nilpotent()
+                False
+
+            The additive identity is always nilpotent::
+
+                sage: set_random_seed()
+                sage: random_eja().zero().is_nilpotent()
+                True
+
+            """
+            # The element we're going to call "is_nilpotent()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.is_nilpotent()
+
+
+        def is_regular(self):
+            """
+            Return whether or not this is a regular element.
+
+            EXAMPLES:
+
+            The identity element always has degree one, but any element
+            linearly-independent from it is regular::
+
+                sage: J = eja_ln(5)
+                sage: J.one().is_regular()
+                False
+                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+                sage: for x in J.gens():
+                ....:     (J.one() + x).is_regular()
+                False
+                True
+                True
+                True
+                True
+
+            """
+            return self.degree() == self.parent().rank()
 
 
         def degree(self):
@@ -168,67 +253,17 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return self.span_of_powers().dimension()
 
 
-        def subalgebra_generated_by(self):
+        def matrix(self):
             """
-            Return the associative subalgebra of the parent EJA generated
-            by this element.
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_rn(n)
-                sage: x = J.random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-                sage: J = eja_ln(n)
-                sage: x = J.random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-
-            Squaring in the subalgebra should be the same thing as
-            squaring in the superalgebra::
-
-                sage: J = eja_ln(5)
-                sage: x = J.random_element()
-                sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.matrix()*u.vector() == (u**2).vector()
-                True
+            Return the matrix that represents left- (or right-)
+            multiplication by this element in the parent algebra.
 
+            We have to override this because the superclass method
+            returns a matrix that acts on row vectors (that is, on
+            the right).
             """
-            # First get the subspace spanned by the powers of myself...
-            V = self.span_of_powers()
-            F = self.base_ring()
-
-            # Now figure out the entries of the right-multiplication
-            # matrix for the successive basis elements b0, b1,... of
-            # that subspace.
-            mats = []
-            for b_right in V.basis():
-                eja_b_right = self.parent()(b_right)
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in V.basis():
-                    eja_b_left = self.parent()(b_left)
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mats.append(b_right_matrix)
-
-            # It's an algebra of polynomials in one element, and EJAs
-            # are power-associative.
-            #
-            # TODO: choose generator names intelligently.
-            return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
+            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            return fda_elt.matrix().transpose()
 
 
         def minimal_polynomial(self):
@@ -236,18 +271,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_rn(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.degree() == x.minimal_polynomial().degree()
                 True
 
             ::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = eja_ln(n)
-                sage: x = J.random_element()
+                sage: x = random_eja().random_element()
                 sage: x.degree() == x.minimal_polynomial().degree()
                 True
 
@@ -292,65 +323,121 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return elt.minimal_polynomial()
 
 
-        def is_nilpotent(self):
+        def quadratic_representation(self):
             """
-            Return whether or not some power of this element is zero.
-
-            The superclass method won't work unless we're in an
-            associative algebra, and we aren't. However, we generate
-            an assocoative subalgebra and we're nilpotent there if and
-            only if we're nilpotent here (probably).
+            Return the quadratic representation of this element.
 
-            TESTS:
+            EXAMPLES:
 
-            The identity element is never nilpotent::
+            The explicit form in the spin factor algebra is given by
+            Alizadeh's Example 11.12::
 
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_rn(n)
-                sage: J.one().is_nilpotent()
-                False
+                sage: n = ZZ.random_element(1,10).abs()
                 sage: J = eja_ln(n)
-                sage: J.one().is_nilpotent()
-                False
+                sage: x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+                sage: B = 2*x0*x_bar.row()
+                sage: C = 2*x0*x_bar.column()
+                sage: D = identity_matrix(QQ, n-1)
+                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+                sage: D = D + 2*x_bar.tensor_product(x_bar)
+                sage: Q = block_matrix(2,2,[A,B,C,D])
+                sage: Q == x.quadratic_representation()
+                True
 
-            The additive identity is always nilpotent::
+            """
+            return 2*(self.matrix()**2) - (self**2).matrix()
+
+
+        def span_of_powers(self):
+            """
+            Return the vector space spanned by successive powers of
+            this element.
+            """
+            # The dimension of the subalgebra can't be greater than
+            # the big algebra, so just put everything into a list
+            # and let span() get rid of the excess.
+            V = self.vector().parent()
+            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+
+
+        def subalgebra_generated_by(self):
+            """
+            Return the associative subalgebra of the parent EJA generated
+            by this element.
+
+            TESTS::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = eja_rn(n)
-                sage: J.zero().is_nilpotent()
+                sage: x = random_eja().random_element()
+                sage: x.subalgebra_generated_by().is_associative()
                 True
-                sage: J = eja_ln(n)
-                sage: J.zero().is_nilpotent()
+
+            Squaring in the subalgebra should be the same thing as
+            squaring in the superalgebra::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: u = x.subalgebra_generated_by().random_element()
+                sage: u.matrix()*u.vector() == (u**2).vector()
                 True
 
             """
-            # The element we're going to call "is_nilpotent()" on.
-            # Either myself, interpreted as an element of a finite-
-            # dimensional algebra, or an element of an associative
-            # subalgebra.
-            elt = None
+            # First get the subspace spanned by the powers of myself...
+            V = self.span_of_powers()
+            F = self.base_ring()
 
-            if self.parent().is_associative():
-                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            else:
-                V = self.span_of_powers()
-                assoc_subalg = self.subalgebra_generated_by()
-                # Mis-design warning: the basis used for span_of_powers()
-                # and subalgebra_generated_by() must be the same, and in
-                # the same order!
-                elt = assoc_subalg(V.coordinates(self.vector()))
+            # Now figure out the entries of the right-multiplication
+            # matrix for the successive basis elements b0, b1,... of
+            # that subspace.
+            mats = []
+            for b_right in V.basis():
+                eja_b_right = self.parent()(b_right)
+                b_right_rows = []
+                # The first row of the right-multiplication matrix by
+                # b1 is what we get if we apply that matrix to b1. The
+                # second row of the right multiplication matrix by b1
+                # is what we get when we apply that matrix to b2...
+                #
+                # IMPORTANT: this assumes that all vectors are COLUMN
+                # vectors, unlike our superclass (which uses row vectors).
+                for b_left in V.basis():
+                    eja_b_left = self.parent()(b_left)
+                    # Multiply in the original EJA, but then get the
+                    # coordinates from the subalgebra in terms of its
+                    # basis.
+                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+                    b_right_rows.append(this_row)
+                b_right_matrix = matrix(F, b_right_rows)
+                mats.append(b_right_matrix)
 
-            # Recursive call, but should work since elt lives in an
-            # associative algebra.
-            return elt.is_nilpotent()
+            # It's an algebra of polynomials in one element, and EJAs
+            # are power-associative.
+            #
+            # TODO: choose generator names intelligently.
+            return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
 
 
         def subalgebra_idempotent(self):
             """
             Find an idempotent in the associative subalgebra I generate
             using Proposition 2.3.5 in Baes.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: J = eja_rn(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+                sage: J = eja_ln(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+
             """
             if self.is_nilpotent():
                 raise ValueError("this only works with non-nilpotent elements!")
@@ -396,9 +483,24 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return self.parent().linear_combination(zip(c_coordinates, basis))
 
 
+        def trace(self):
+            """
+            Return my trace, the sum of my eigenvalues.
 
-        def characteristic_polynomial(self):
-            return self.matrix().characteristic_polynomial()
+            EXAMPLES::
+
+                sage: J = eja_ln(3)
+                sage: e0,e1,e2 = J.gens()
+                sage: x = e0 + e1 + e2
+                sage: x.trace()
+                2
+
+            """
+            cs = self.characteristic_polynomial().coefficients(sparse=False)
+            if len(cs) >= 2:
+                return -1*cs[-2]
+            else:
+                raise ValueError('charpoly had fewer than 2 coefficients')
 
 
 def eja_rn(dimension, field=QQ):
@@ -489,3 +591,104 @@ def eja_ln(dimension, field=QQ):
     # ambient dimension).
     rank = min(dimension,2)
     return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=rank)
+
+
+def eja_sn(dimension, field=QQ):
+    """
+    Return the simple Jordan algebra of ``dimension``-by-``dimension``
+    symmetric matrices over ``field``.
+
+    EXAMPLES::
+
+        sage: J = eja_sn(2)
+        sage: e0, e1, e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e1*e1
+        e0 + e2
+        sage: e2*e2
+        e2
+
+    """
+    Qs = []
+
+    # In S^2, for example, we nominally have four coordinates even
+    # though the space is of dimension three only. The vector space V
+    # is supposed to hold the entire long vector, and the subspace W
+    # of V will be spanned by the vectors that arise from symmetric
+    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+    V = VectorSpace(field, dimension**2)
+
+    # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+    # coordinates.
+    S = []
+
+    for i in xrange(dimension):
+        for j in xrange(i+1):
+            Eij = matrix(field, dimension, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = Eij
+            else:
+                Sij = Eij + Eij.transpose()
+            S.append(Sij)
+
+    def mat2vec(m):
+        return vector(field, m.list())
+
+    def vec2mat(v):
+        return matrix(field, dimension, v.list())
+
+    W = V.span( mat2vec(s) for s in S )
+
+    # Taking the span above reorders our basis (thanks, jerk!) so we
+    # need to put our "matrix basis" in the same order as the
+    # (reordered) vector basis.
+    S = [ vec2mat(b) for b in W.basis() ]
+
+    for s in S:
+        # Brute force the multiplication-by-s matrix by looping
+        # through all elements of the basis and doing the computation
+        # to find out what the corresponding row should be. BEWARE:
+        # these multiplication tables won't be symmetric! It therefore
+        # becomes REALLY IMPORTANT that the underlying algebra
+        # constructor uses ROW vectors and not COLUMN vectors. That's
+        # why we're computing rows here and not columns.
+        Q_rows = []
+        for t in S:
+            this_row = mat2vec((s*t + t*s)/2)
+            Q_rows.append(W.coordinates(this_row))
+        Q = matrix(field,Q_rows)
+        Qs.append(Q)
+
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
+
+
+def random_eja():
+    """
+    Return a "random" finite-dimensional Euclidean Jordan Algebra.
+
+    ALGORITHM:
+
+    For now, we choose a random natural number ``n`` (greater than zero)
+    and then give you back one of the following:
+
+      * The cartesian product of the rational numbers ``n`` times; this is
+        ``QQ^n`` with the Hadamard product.
+
+      * The Jordan spin algebra on ``QQ^n``.
+
+      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
+        product.
+
+    Later this might be extended to return Cartesian products of the
+    EJAs above.
+
+    TESTS::
+
+        sage: random_eja()
+        Euclidean Jordan algebra of degree...
+
+    """
+    n = ZZ.random_element(1,10).abs()
+    constructor = choice([eja_rn, eja_ln, eja_sn])
+    return constructor(dimension=n, field=QQ)