]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: finally enable tests for the trace inner product.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 52e1383383cac83a8fa91e3f63c39c8795d8b533..c37ace0b2bbf1ce19f20e3127a4a5c80b7191b4e 100644 (file)
@@ -5,35 +5,261 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.structure.element import is_Matrix
+from sage.structure.category_object import normalize_names
+
 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 
 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     @staticmethod
-    def __classcall__(cls, field, mult_table, names='e', category=None):
+    def __classcall_private__(cls,
+                              field,
+                              mult_table,
+                              names='e',
+                              assume_associative=False,
+                              category=None,
+                              rank=None,
+                              natural_basis=None):
+        n = len(mult_table)
+        mult_table = [b.base_extend(field) for b in mult_table]
+        for b in mult_table:
+            b.set_immutable()
+            if not (is_Matrix(b) and b.dimensions() == (n, n)):
+                raise ValueError("input is not a multiplication table")
+        mult_table = tuple(mult_table)
+
+        cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
+        cat.or_subcategory(category)
+        if assume_associative:
+            cat = cat.Associative()
+
+        names = normalize_names(n, names)
+
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall_private__(cls,
-                                         field,
-                                         mult_table,
-                                         names,
-                                         category)
+        return fda.__classcall__(cls,
+                                 field,
+                                 mult_table,
+                                 assume_associative=assume_associative,
+                                 names=names,
+                                 category=cat,
+                                 rank=rank,
+                                 natural_basis=natural_basis)
+
+
+    def __init__(self,
+                 field,
+                 mult_table,
+                 names='e',
+                 assume_associative=False,
+                 category=None,
+                 rank=None,
+                 natural_basis=None):
+        """
+        EXAMPLES:
+
+        By definition, Jordan multiplication commutes::
 
-    def __init__(self, field, mult_table, names='e', category=None):
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x*y == y*x
+            True
+
+        """
+        self._rank = rank
+        self._natural_basis = natural_basis
+        self._multiplication_table = mult_table
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
-        fda.__init__(field, mult_table, names, category)
+        fda.__init__(field,
+                     mult_table,
+                     names=names,
+                     category=category)
 
 
     def _repr_(self):
         """
         Return a string representation of ``self``.
         """
-        return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring())
+        fmt = "Euclidean Jordan algebra of degree {} over {}"
+        return fmt.format(self.degree(), self.base_ring())
+
+
+
+    @cached_method
+    def _charpoly_coeff(self, i):
+        """
+        Return the coefficient polynomial "a_{i}" of this algebra's
+        general characteristic polynomial.
+
+        Having this be a separate cached method lets us compute and
+        store the trace/determinant (a_{r-1} and a_{0} respectively)
+        separate from the entire characteristic polynomial.
+        """
+        (A_of_x, x) = self._charpoly_matrix()
+        R = A_of_x.base_ring()
+        A_cols = A_of_x.columns()
+        A_cols[i] = (x**self.rank()).vector()
+        numerator = column_matrix(A_of_x.base_ring(), A_cols).det()
+        denominator = A_of_x.det()
+
+        # We're relying on the theory here to ensure that each a_i is
+        # indeed back in R, and the added negative signs are to make
+        # the whole charpoly expression sum to zero.
+        return R(-numerator/denominator)
+
+
+    @cached_method
+    def _charpoly_matrix(self):
+        """
+        Compute the matrix whose entries A_ij are polynomials in
+        X1,...,XN. This same matrix is used in more than one method and
+        it's not so fast to construct.
+        """
+        r = self.rank()
+        n = self.dimension()
+
+        # Construct a new algebra over a multivariate polynomial ring...
+        names = ['X' + str(i) for i in range(1,n+1)]
+        R = PolynomialRing(self.base_ring(), names)
+        J = FiniteDimensionalEuclideanJordanAlgebra(R,
+                                                    self._multiplication_table,
+                                                    rank=r)
+
+        idmat = identity_matrix(J.base_ring(), n)
+
+        x = J(vector(R, R.gens()))
+        l1 = [column_matrix((x**k).vector()) for k in range(r)]
+        l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
+        A_of_x = block_matrix(R, 1, n, (l1 + l2))
+        return (A_of_x, x)
+
+
+    @cached_method
+    def characteristic_polynomial(self):
+        """
+        EXAMPLES:
+
+        The characteristic polynomial in the spin algebra is given in
+        Alizadeh, Example 11.11::
+
+            sage: J = JordanSpinEJA(3)
+            sage: p = J.characteristic_polynomial(); p
+            X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
+            sage: xvec = J.one().vector()
+            sage: p(*xvec)
+            t^2 - 2*t + 1
+
+        """
+        r = self.rank()
+        n = self.dimension()
+
+        # The list of coefficient polynomials a_1, a_2, ..., a_n.
+        a = [ self._charpoly_coeff(i) for i in range(n) ]
+
+        # We go to a bit of trouble here to reorder the
+        # indeterminates, so that it's easier to evaluate the
+        # characteristic polynomial at x's coordinates and get back
+        # something in terms of t, which is what we want.
+        R = a[0].parent()
+        S = PolynomialRing(self.base_ring(),'t')
+        t = S.gen(0)
+        S = PolynomialRing(S, R.variable_names())
+        t = S(t)
+
+        # Note: all entries past the rth should be zero. The
+        # coefficient of the highest power (x^r) is 1, but it doesn't
+        # appear in the solution vector which contains coefficients
+        # for the other powers (to make them sum to x^r).
+        if (r < n):
+            a[r] = 1 # corresponds to x^r
+        else:
+            # When the rank is equal to the dimension, trying to
+            # assign a[r] goes out-of-bounds.
+            a.append(1) # corresponds to x^r
+
+        return sum( a[k]*(t**k) for k in range(len(a)) )
+
+
+    def inner_product(self, x, y):
+        """
+        The inner product associated with this Euclidean Jordan algebra.
+
+        Defaults to the trace inner product, but can be overridden by
+        subclasses if they are sure that the necessary properties are
+        satisfied.
+
+        EXAMPLES:
+
+        The inner product must satisfy its axiom for this algebra to truly
+        be a Euclidean Jordan Algebra::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            True
+
+        """
+        if (not x in self) or (not y in self):
+            raise TypeError("arguments must live in this algebra")
+        return x.trace_inner_product(y)
+
+
+    def natural_basis(self):
+        """
+        Return a more-natural representation of this algebra's basis.
+
+        Every finite-dimensional Euclidean Jordan Algebra is a direct
+        sum of five simple algebras, four of which comprise Hermitian
+        matrices. This method returns the original "natural" basis
+        for our underlying vector space. (Typically, the natural basis
+        is used to construct the multiplication table in the first place.)
+
+        Note that this will always return a matrix. The standard basis
+        in `R^n` will be returned as `n`-by-`1` column matrices.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: J.basis()
+            Family (e0, e1, e2)
+            sage: J.natural_basis()
+            (
+            [1 0]  [0 1]  [0 0]
+            [0 0], [1 0], [0 1]
+            )
+
+        ::
+
+            sage: J = JordanSpinEJA(2)
+            sage: J.basis()
+            Family (e0, e1)
+            sage: J.natural_basis()
+            (
+            [1]  [0]
+            [0], [1]
+            )
+
+        """
+        if self._natural_basis is None:
+            return tuple( b.vector().column() for b in self.basis() )
+        else:
+            return self._natural_basis
+
 
     def rank(self):
         """
         Return the rank of this EJA.
         """
-        raise NotImplementedError
+        if self._rank is None:
+            raise ValueError("no rank specified at genesis")
+        else:
+            return self._rank
 
 
     class Element(FiniteDimensionalAlgebraElement):
@@ -41,12 +267,92 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         An element of a Euclidean Jordan algebra.
         """
 
+        def __init__(self, A, elt=None):
+            """
+            EXAMPLES:
+
+            The identity in `S^n` is converted to the identity in the EJA::
+
+                sage: J = RealSymmetricEJA(3)
+                sage: I = identity_matrix(QQ,3)
+                sage: J(I) == J.one()
+                True
+
+            This skew-symmetric matrix can't be represented in the EJA::
+
+                sage: J = RealSymmetricEJA(3)
+                sage: A = matrix(QQ,3, lambda i,j: i-j)
+                sage: J(A)
+                Traceback (most recent call last):
+                ...
+                ArithmeticError: vector is not in free module
+
+            """
+            # Goal: if we're given a matrix, and if it lives in our
+            # parent algebra's "natural ambient space," convert it
+            # into an algebra element.
+            #
+            # The catch is, we make a recursive call after converting
+            # the given matrix into a vector that lives in the algebra.
+            # This we need to try the parent class initializer first,
+            # to avoid recursing forever if we're given something that
+            # already fits into the algebra, but also happens to live
+            # in the parent's "natural ambient space" (this happens with
+            # vectors in R^n).
+            try:
+                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
+            except ValueError:
+                natural_basis = A.natural_basis()
+                if elt in natural_basis[0].matrix_space():
+                    # Thanks for nothing! Matrix spaces aren't vector
+                    # spaces in Sage, so we have to figure out its
+                    # natural-basis coordinates ourselves.
+                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
+                    W = V.span( _mat2vec(s) for s in natural_basis )
+                    coords =  W.coordinates(_mat2vec(elt))
+                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
+
         def __pow__(self, n):
             """
             Return ``self`` raised to the power ``n``.
 
             Jordan algebras are always power-associative; see for
             example Faraut and Koranyi, Proposition II.1.2 (ii).
+
+            .. WARNING:
+
+                We have to override this because our superclass uses row vectors
+                instead of column vectors! We, on the other hand, assume column
+                vectors everywhere.
+
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_matrix()*x.vector() == (x^2).vector()
+                True
+
+            A few examples of power-associativity::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x*(x*x)*(x*x) == x^5
+                True
+                sage: (x*x)*(x*x*x) == x^5
+                True
+
+            We also know that powers operator-commute (Koecher, Chapter
+            III, Corollary 1)::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: m = ZZ.random_element(0,10)
+                sage: n = ZZ.random_element(0,10)
+                sage: Lxm = (x^m).operator_matrix()
+                sage: Lxn = (x^n).operator_matrix()
+                sage: Lxm*Lxn == Lxn*Lxm
+                True
+
             """
             A = self.parent()
             if n == 0:
@@ -54,7 +360,408 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             elif n == 1:
                 return self
             else:
-                return A.element_class(A, self.vector()*(self.matrix()**(n-1)))
+                return A( (self.operator_matrix()**(n-1))*self.vector() )
+
+
+        def apply_univariate_polynomial(self, p):
+            """
+            Apply the univariate polynomial ``p`` to this element.
+
+            A priori, SageMath won't allow us to apply a univariate
+            polynomial to an element of an EJA, because we don't know
+            that EJAs are rings (they are usually not associative). Of
+            course, we know that EJAs are power-associative, so the
+            operation is ultimately kosher. This function sidesteps
+            the CAS to get the answer we want and expect.
+
+            EXAMPLES::
+
+                sage: R = PolynomialRing(QQ, 't')
+                sage: t = R.gen(0)
+                sage: p = t^4 - t^3 + 5*t - 2
+                sage: J = RealCartesianProductEJA(5)
+                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
+                True
+
+            TESTS:
+
+            We should always get back an element of the algebra::
+
+                sage: set_random_seed()
+                sage: p = PolynomialRing(QQ, 't').random_element()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: x.apply_univariate_polynomial(p) in J
+                True
+
+            """
+            if len(p.variables()) > 1:
+                raise ValueError("not a univariate polynomial")
+            P = self.parent()
+            R = P.base_ring()
+            # Convert the coeficcients to the parent's base ring,
+            # because a priori they might live in an (unnecessarily)
+            # larger ring for which P.sum() would fail below.
+            cs = [ R(c) for c in p.coefficients(sparse=False) ]
+            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
+
+
+        def characteristic_polynomial(self):
+            """
+            Return the characteristic polynomial of this element.
+
+            EXAMPLES:
+
+            The rank of `R^3` is three, and the minimal polynomial of
+            the identity element is `(t-1)` from which it follows that
+            the characteristic polynomial should be `(t-1)^3`::
+
+                sage: J = RealCartesianProductEJA(3)
+                sage: J.one().characteristic_polynomial()
+                t^3 - 3*t^2 + 3*t - 1
+
+            Likewise, the characteristic of the zero element in the
+            rank-three algebra `R^{n}` should be `t^{3}`::
+
+                sage: J = RealCartesianProductEJA(3)
+                sage: J.zero().characteristic_polynomial()
+                t^3
+
+            The characteristic polynomial of an element should evaluate
+            to zero on that element::
+
+                sage: set_random_seed()
+                sage: x = RealCartesianProductEJA(3).random_element()
+                sage: p = x.characteristic_polynomial()
+                sage: x.apply_univariate_polynomial(p)
+                0
+
+            """
+            p = self.parent().characteristic_polynomial()
+            return p(*self.vector())
+
+
+        def inner_product(self, other):
+            """
+            Return the parent algebra's inner product of myself and ``other``.
+
+            EXAMPLES:
+
+            The inner product in the Jordan spin algebra is the usual
+            inner product on `R^n` (this example only works because the
+            basis for the Jordan algebra is the standard basis in `R^n`)::
+
+                sage: J = JordanSpinEJA(3)
+                sage: x = vector(QQ,[1,2,3])
+                sage: y = vector(QQ,[4,5,6])
+                sage: x.inner_product(y)
+                32
+                sage: J(x).inner_product(J(y))
+                32
+
+            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
+            multiplication is the usual matrix multiplication in `S^n`,
+            so the inner product of the identity matrix with itself
+            should be the `n`::
+
+                sage: J = RealSymmetricEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Likewise, the inner product on `C^n` is `<X,Y> =
+            Re(trace(X*Y))`, where we must necessarily take the real
+            part because the product of Hermitian matrices may not be
+            Hermitian::
+
+                sage: J = ComplexHermitianEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Ditto for the quaternions::
+
+                sage: J = QuaternionHermitianEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            TESTS:
+
+            Ensure that we can always compute an inner product, and that
+            it gives us back a real number::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: x.inner_product(y) in RR
+                True
+
+            """
+            P = self.parent()
+            if not other in P:
+                raise TypeError("'other' must live in the same algebra")
+
+            return P.inner_product(self, other)
+
+
+        def operator_commutes_with(self, other):
+            """
+            Return whether or not this element operator-commutes
+            with ``other``.
+
+            EXAMPLES:
+
+            The definition of a Jordan algebra says that any element
+            operator-commutes with its square::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_commutes_with(x^2)
+                True
+
+            TESTS:
+
+            Test Lemma 1 from Chapter III of Koecher::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: v = J.random_element()
+                sage: lhs = u.operator_commutes_with(u*v)
+                sage: rhs = v.operator_commutes_with(u^2)
+                sage: lhs == rhs
+                True
+
+            """
+            if not other in self.parent():
+                raise TypeError("'other' must live in the same algebra")
+
+            A = self.operator_matrix()
+            B = other.operator_matrix()
+            return (A*B == B*A)
+
+
+        def det(self):
+            """
+            Return my determinant, the product of my eigenvalues.
+
+            EXAMPLES::
+
+                sage: J = JordanSpinEJA(2)
+                sage: e0,e1 = J.gens()
+                sage: x = sum( J.gens() )
+                sage: x.det()
+                0
+
+            ::
+
+                sage: J = JordanSpinEJA(3)
+                sage: e0,e1,e2 = J.gens()
+                sage: x = sum( J.gens() )
+                sage: x.det()
+                -1
+
+            TESTS:
+
+            An element is invertible if and only if its determinant is
+            non-zero::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.is_invertible() == (x.det() != 0)
+                True
+
+            """
+            P = self.parent()
+            r = P.rank()
+            p = P._charpoly_coeff(0)
+            # The _charpoly_coeff function already adds the factor of
+            # -1 to ensure that _charpoly_coeff(0) is really what
+            # appears in front of t^{0} in the charpoly. However,
+            # we want (-1)^r times THAT for the determinant.
+            return ((-1)**r)*p(*self.vector())
+
+
+        def inverse(self):
+            """
+            Return the Jordan-multiplicative inverse of this element.
+
+            We can't use the superclass method because it relies on the
+            algebra being associative.
+
+            EXAMPLES:
+
+            The inverse in the spin factor algebra is given in Alizadeh's
+            Example 11.11::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinEJA(n)
+                sage: x = J.random_element()
+                sage: while x.is_zero():
+                ....:     x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
+                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+                sage: x_inverse = coeff*inv_vec
+                sage: x.inverse() == J(x_inverse)
+                True
+
+            TESTS:
+
+            The identity element is its own inverse::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().inverse() == J.one()
+                True
+
+            If an element has an inverse, it acts like one::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
+                True
+
+            """
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+                return elt.inverse()
+
+            # TODO: we can do better once the call to is_invertible()
+            # doesn't crash on irregular elements.
+            #if not self.is_invertible():
+            #    raise ValueError('element is not invertible')
+
+            # We do this a little different than the usual recursive
+            # call to a finite-dimensional algebra element, because we
+            # wind up with an inverse that lives in the subalgebra and
+            # we need information about the parent to convert it back.
+            V = self.span_of_powers()
+            assoc_subalg = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # This will be in the subalgebra's coordinates...
+            fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
+            subalg_inverse = fda_elt.inverse()
+
+            # So we have to convert back...
+            basis = [ self.parent(v) for v in V.basis() ]
+            pairs = zip(subalg_inverse.vector(), basis)
+            return self.parent().linear_combination(pairs)
+
+
+        def is_invertible(self):
+            """
+            Return whether or not this element is invertible.
+
+            We can't use the superclass method because it relies on
+            the algebra being associative.
+
+            ALGORITHM:
+
+            The usual way to do this is to check if the determinant is
+            zero, but we need the characteristic polynomial for the
+            determinant. The minimal polynomial is a lot easier to get,
+            so we use Corollary 2 in Chapter V of Koecher to check
+            whether or not the paren't algebra's zero element is a root
+            of this element's minimal polynomial.
+
+            TESTS:
+
+            The identity element is always invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().is_invertible()
+                True
+
+            The zero element is never invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.zero().is_invertible()
+                False
+
+            """
+            zero = self.parent().zero()
+            p = self.minimal_polynomial()
+            return not (p(zero) == zero)
+
+
+        def is_nilpotent(self):
+            """
+            Return whether or not some power of this element is zero.
+
+            The superclass method won't work unless we're in an
+            associative algebra, and we aren't. However, we generate
+            an assocoative subalgebra and we're nilpotent there if and
+            only if we're nilpotent here (probably).
+
+            TESTS:
+
+            The identity element is never nilpotent::
+
+                sage: set_random_seed()
+                sage: random_eja().one().is_nilpotent()
+                False
+
+            The additive identity is always nilpotent::
+
+                sage: set_random_seed()
+                sage: random_eja().zero().is_nilpotent()
+                True
+
+            """
+            # The element we're going to call "is_nilpotent()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.is_nilpotent()
+
+
+        def is_regular(self):
+            """
+            Return whether or not this is a regular element.
+
+            EXAMPLES:
+
+            The identity element always has degree one, but any element
+            linearly-independent from it is regular::
+
+                sage: J = JordanSpinEJA(5)
+                sage: J.one().is_regular()
+                False
+                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+                sage: for x in J.gens():
+                ....:     (J.one() + x).is_regular()
+                False
+                True
+                True
+                True
+                True
+
+            """
+            return self.degree() == self.parent().rank()
 
 
         def degree(self):
@@ -66,39 +773,528 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = eja_ln(4)
+                sage: J = JordanSpinEJA(4)
                 sage: J.one().degree()
                 1
                 sage: e0,e1,e2,e3 = J.gens()
                 sage: (e0 - e1).degree()
                 2
 
+            In the spin factor algebra (of rank two), all elements that
+            aren't multiples of the identity are regular::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinEJA(n)
+                sage: x = J.random_element()
+                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+                True
+
             """
-            d = 0
-            V = self.vector().parent()
-            vectors = [(self**d).vector()]
-            while V.span(vectors).dimension() > d:
-                d += 1
-                vectors.append((self**d).vector())
-            return d
+            return self.span_of_powers().dimension()
+
 
         def minimal_polynomial(self):
-            return self.matrix().minimal_polynomial()
+            """
+            Return the minimal polynomial of this element,
+            as a function of the variable `t`.
 
-        def characteristic_polynomial(self):
-            return self.matrix().characteristic_polynomial()
+            ALGORITHM:
+
+            We restrict ourselves to the associative subalgebra
+            generated by this element, and then return the minimal
+            polynomial of this element's operator matrix (in that
+            subalgebra). This works by Baes Proposition 2.3.16.
+
+            TESTS:
+
+            The minimal polynomial of the identity and zero elements are
+            always the same::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().minimal_polynomial()
+                t - 1
+                sage: J.zero().minimal_polynomial()
+                t
+
+            The degree of an element is (by one definition) the degree
+            of its minimal polynomial::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.degree() == x.minimal_polynomial().degree()
+                True
+
+            The minimal polynomial and the characteristic polynomial coincide
+            and are known (see Alizadeh, Example 11.11) for all elements of
+            the spin factor algebra that aren't scalar multiples of the
+            identity::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(2,10)
+                sage: J = JordanSpinEJA(n)
+                sage: y = J.random_element()
+                sage: while y == y.coefficient(0)*J.one():
+                ....:     y = J.random_element()
+                sage: y0 = y.vector()[0]
+                sage: y_bar = y.vector()[1:]
+                sage: actual = y.minimal_polynomial()
+                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
+                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
+                sage: bool(actual == expected)
+                True
+
+            The minimal polynomial should always kill its element::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: p = x.minimal_polynomial()
+                sage: x.apply_univariate_polynomial(p)
+                0
+
+            """
+            V = self.span_of_powers()
+            assoc_subalg = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # We get back a symbolic polynomial in 'x' but want a real
+            # polynomial in 't'.
+            p_of_x = elt.operator_matrix().minimal_polynomial()
+            return p_of_x.change_variable_name('t')
+
+
+        def natural_representation(self):
+            """
+            Return a more-natural representation of this element.
+
+            Every finite-dimensional Euclidean Jordan Algebra is a
+            direct sum of five simple algebras, four of which comprise
+            Hermitian matrices. This method returns the original
+            "natural" representation of this element as a Hermitian
+            matrix, if it has one. If not, you get the usual representation.
+
+            EXAMPLES::
+
+                sage: J = ComplexHermitianEJA(3)
+                sage: J.one()
+                e0 + e5 + e8
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0]
+                [0 1 0 0 0 0]
+                [0 0 1 0 0 0]
+                [0 0 0 1 0 0]
+                [0 0 0 0 1 0]
+                [0 0 0 0 0 1]
+
+            ::
+
+                sage: J = QuaternionHermitianEJA(3)
+                sage: J.one()
+                e0 + e9 + e14
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0 0 0 0 0 0 0]
+                [0 1 0 0 0 0 0 0 0 0 0 0]
+                [0 0 1 0 0 0 0 0 0 0 0 0]
+                [0 0 0 1 0 0 0 0 0 0 0 0]
+                [0 0 0 0 1 0 0 0 0 0 0 0]
+                [0 0 0 0 0 1 0 0 0 0 0 0]
+                [0 0 0 0 0 0 1 0 0 0 0 0]
+                [0 0 0 0 0 0 0 1 0 0 0 0]
+                [0 0 0 0 0 0 0 0 1 0 0 0]
+                [0 0 0 0 0 0 0 0 0 1 0 0]
+                [0 0 0 0 0 0 0 0 0 0 1 0]
+                [0 0 0 0 0 0 0 0 0 0 0 1]
+
+            """
+            B = self.parent().natural_basis()
+            W = B[0].matrix_space()
+            return W.linear_combination(zip(self.vector(), B))
+
+
+        def operator_matrix(self):
+            """
+            Return the matrix that represents left- (or right-)
+            multiplication by this element in the parent algebra.
+
+            We have to override this because the superclass method
+            returns a matrix that acts on row vectors (that is, on
+            the right).
+
+            EXAMPLES:
+
+            Test the first polarization identity from my notes, Koecher Chapter
+            III, or from Baes (2.3)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lxx = (x*x).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
+                True
+
+            Test the second polarization identity from my notes or from
+            Baes (2.4)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: Lxz = (x*z).operator_matrix()
+                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
+                True
 
+            Test the third polarization identity from my notes or from
+            Baes (2.5)::
 
-def eja_rn(dimension, field=QQ):
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lu = u.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Luy = (u*y).operator_matrix()
+                sage: Luz = (u*z).operator_matrix()
+                sage: Luyz = (u*(y*z)).operator_matrix()
+                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+                sage: bool(lhs == rhs)
+                True
+
+            """
+            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            return fda_elt.matrix().transpose()
+
+
+        def quadratic_representation(self, other=None):
+            """
+            Return the quadratic representation of this element.
+
+            EXAMPLES:
+
+            The explicit form in the spin factor algebra is given by
+            Alizadeh's Example 11.12::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinEJA(n)
+                sage: x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+                sage: B = 2*x0*x_bar.row()
+                sage: C = 2*x0*x_bar.column()
+                sage: D = identity_matrix(QQ, n-1)
+                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+                sage: D = D + 2*x_bar.tensor_product(x_bar)
+                sage: Q = block_matrix(2,2,[A,B,C,D])
+                sage: Q == x.quadratic_representation()
+                True
+
+            Test all of the properties from Theorem 11.2 in Alizadeh::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+
+            Property 1:
+
+                sage: actual = x.quadratic_representation(y)
+                sage: expected = ( (x+y).quadratic_representation()
+                ....:              -x.quadratic_representation()
+                ....:              -y.quadratic_representation() ) / 2
+                sage: actual == expected
+                True
+
+            Property 2:
+
+                sage: alpha = QQ.random_element()
+                sage: actual = (alpha*x).quadratic_representation()
+                sage: expected = (alpha^2)*x.quadratic_representation()
+                sage: actual == expected
+                True
+
+            Property 5:
+
+                sage: Qy = y.quadratic_representation()
+                sage: actual = J(Qy*x.vector()).quadratic_representation()
+                sage: expected = Qy*x.quadratic_representation()*Qy
+                sage: actual == expected
+                True
+
+            Property 6:
+
+                sage: k = ZZ.random_element(1,10)
+                sage: actual = (x^k).quadratic_representation()
+                sage: expected = (x.quadratic_representation())^k
+                sage: actual == expected
+                True
+
+            """
+            if other is None:
+                other=self
+            elif not other in self.parent():
+                raise TypeError("'other' must live in the same algebra")
+
+            L = self.operator_matrix()
+            M = other.operator_matrix()
+            return ( L*M + M*L - (self*other).operator_matrix() )
+
+
+        def span_of_powers(self):
+            """
+            Return the vector space spanned by successive powers of
+            this element.
+            """
+            # The dimension of the subalgebra can't be greater than
+            # the big algebra, so just put everything into a list
+            # and let span() get rid of the excess.
+            #
+            # We do the extra ambient_vector_space() in case we're messing
+            # with polynomials and the direct parent is a module.
+            V = self.vector().parent().ambient_vector_space()
+            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+
+
+        def subalgebra_generated_by(self):
+            """
+            Return the associative subalgebra of the parent EJA generated
+            by this element.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.subalgebra_generated_by().is_associative()
+                True
+
+            Squaring in the subalgebra should be the same thing as
+            squaring in the superalgebra::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: u = x.subalgebra_generated_by().random_element()
+                sage: u.operator_matrix()*u.vector() == (u**2).vector()
+                True
+
+            """
+            # First get the subspace spanned by the powers of myself...
+            V = self.span_of_powers()
+            F = self.base_ring()
+
+            # Now figure out the entries of the right-multiplication
+            # matrix for the successive basis elements b0, b1,... of
+            # that subspace.
+            mats = []
+            for b_right in V.basis():
+                eja_b_right = self.parent()(b_right)
+                b_right_rows = []
+                # The first row of the right-multiplication matrix by
+                # b1 is what we get if we apply that matrix to b1. The
+                # second row of the right multiplication matrix by b1
+                # is what we get when we apply that matrix to b2...
+                #
+                # IMPORTANT: this assumes that all vectors are COLUMN
+                # vectors, unlike our superclass (which uses row vectors).
+                for b_left in V.basis():
+                    eja_b_left = self.parent()(b_left)
+                    # Multiply in the original EJA, but then get the
+                    # coordinates from the subalgebra in terms of its
+                    # basis.
+                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+                    b_right_rows.append(this_row)
+                b_right_matrix = matrix(F, b_right_rows)
+                mats.append(b_right_matrix)
+
+            # It's an algebra of polynomials in one element, and EJAs
+            # are power-associative.
+            #
+            # TODO: choose generator names intelligently.
+            return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
+
+
+        def subalgebra_idempotent(self):
+            """
+            Find an idempotent in the associative subalgebra I generate
+            using Proposition 2.3.5 in Baes.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: J = RealCartesianProductEJA(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+                sage: J = JordanSpinEJA(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+
+            """
+            if self.is_nilpotent():
+                raise ValueError("this only works with non-nilpotent elements!")
+
+            V = self.span_of_powers()
+            J = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            u = J(V.coordinates(self.vector()))
+
+            # The image of the matrix of left-u^m-multiplication
+            # will be minimal for some natural number s...
+            s = 0
+            minimal_dim = V.dimension()
+            for i in xrange(1, V.dimension()):
+                this_dim = (u**i).operator_matrix().image().dimension()
+                if this_dim < minimal_dim:
+                    minimal_dim = this_dim
+                    s = i
+
+            # Now minimal_matrix should correspond to the smallest
+            # non-zero subspace in Baes's (or really, Koecher's)
+            # proposition.
+            #
+            # However, we need to restrict the matrix to work on the
+            # subspace... or do we? Can't we just solve, knowing that
+            # A(c) = u^(s+1) should have a solution in the big space,
+            # too?
+            #
+            # Beware, solve_right() means that we're using COLUMN vectors.
+            # Our FiniteDimensionalAlgebraElement superclass uses rows.
+            u_next = u**(s+1)
+            A = u_next.operator_matrix()
+            c_coordinates = A.solve_right(u_next.vector())
+
+            # Now c_coordinates is the idempotent we want, but it's in
+            # the coordinate system of the subalgebra.
+            #
+            # We need the basis for J, but as elements of the parent algebra.
+            #
+            basis = [self.parent(v) for v in V.basis()]
+            return self.parent().linear_combination(zip(c_coordinates, basis))
+
+
+        def trace(self):
+            """
+            Return my trace, the sum of my eigenvalues.
+
+            EXAMPLES::
+
+                sage: J = JordanSpinEJA(3)
+                sage: x = sum(J.gens())
+                sage: x.trace()
+                2
+
+            ::
+
+                sage: J = RealCartesianProductEJA(5)
+                sage: J.one().trace()
+                5
+
+            TESTS:
+
+            The trace of an element is a real number::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.random_element().trace() in J.base_ring()
+                True
+
+            """
+            P = self.parent()
+            r = P.rank()
+            p = P._charpoly_coeff(r-1)
+            # The _charpoly_coeff function already adds the factor of
+            # -1 to ensure that _charpoly_coeff(r-1) is really what
+            # appears in front of t^{r-1} in the charpoly. However,
+            # we want the negative of THAT for the trace.
+            return -p(*self.vector())
+
+
+        def trace_inner_product(self, other):
+            """
+            Return the trace inner product of myself and ``other``.
+
+            TESTS:
+
+            The trace inner product is commutative::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element(); y = J.random_element()
+                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+                True
+
+            The trace inner product is bilinear::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: a = QQ.random_element();
+                sage: actual = (a*(x+z)).trace_inner_product(y)
+                sage: expected = ( a*x.trace_inner_product(y) +
+                ....:              a*z.trace_inner_product(y) )
+                sage: actual == expected
+                True
+                sage: actual = x.trace_inner_product(a*(y+z))
+                sage: expected = ( a*x.trace_inner_product(y) +
+                ....:              a*x.trace_inner_product(z) )
+                sage: actual == expected
+                True
+
+            The trace inner product satisfies the compatibility
+            condition in the definition of a Euclidean Jordan algebra::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
+                True
+
+            """
+            if not other in self.parent():
+                raise TypeError("'other' must live in the same algebra")
+
+            return (self*other).trace()
+
+
+class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
 
+    Note: this is nothing more than the Cartesian product of ``n``
+    copies of the spin algebra. Once Cartesian product algebras
+    are implemented, this can go.
+
     EXAMPLES:
 
     This multiplication table can be verified by hand::
 
-        sage: J = eja_rn(3)
+        sage: J = RealCartesianProductEJA(3)
         sage: e0,e1,e2 = J.gens()
         sage: e0*e0
         e0
@@ -114,30 +1310,630 @@ def eja_rn(dimension, field=QQ):
         e2
 
     """
-    # The FiniteDimensionalAlgebra constructor takes a list of
-    # matrices, the ith representing right multiplication by the ith
-    # basis element in the vector space. So if e_1 = (1,0,0), then
-    # right (Hadamard) multiplication of x by e_1 picks out the first
-    # component of x; and likewise for the ith basis element e_i.
-    Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
-           for i in xrange(dimension) ]
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        # The FiniteDimensionalAlgebra constructor takes a list of
+        # matrices, the ith representing right multiplication by the ith
+        # basis element in the vector space. So if e_1 = (1,0,0), then
+        # right (Hadamard) multiplication of x by e_1 picks out the first
+        # component of x; and likewise for the ith basis element e_i.
+        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
+               for i in xrange(n) ]
+
+        fdeja = super(RealCartesianProductEJA, cls)
+        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+
+    def inner_product(self, x, y):
+        return _usual_ip(x,y)
+
+
+def random_eja():
+    """
+    Return a "random" finite-dimensional Euclidean Jordan Algebra.
+
+    ALGORITHM:
+
+    For now, we choose a random natural number ``n`` (greater than zero)
+    and then give you back one of the following:
+
+      * The cartesian product of the rational numbers ``n`` times; this is
+        ``QQ^n`` with the Hadamard product.
+
+      * The Jordan spin algebra on ``QQ^n``.
+
+      * The ``n``-by-``n`` rational symmetric matrices with the symmetric
+        product.
+
+      * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
+        in the space of ``2n``-by-``2n`` real symmetric matrices.
+
+      * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
+        in the space of ``4n``-by-``4n`` real symmetric matrices.
+
+    Later this might be extended to return Cartesian products of the
+    EJAs above.
+
+    TESTS::
+
+        sage: random_eja()
+        Euclidean Jordan algebra of degree...
+
+    """
+
+    # The max_n component lets us choose different upper bounds on the
+    # value "n" that gets passed to the constructor. This is needed
+    # because e.g. R^{10} is reasonable to test, while the Hermitian
+    # 10-by-10 quaternion matrices are not.
+    (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
+                                   (JordanSpinEJA, 6),
+                                   (RealSymmetricEJA, 5),
+                                   (ComplexHermitianEJA, 4),
+                                   (QuaternionHermitianEJA, 3)])
+    n = ZZ.random_element(1, max_n)
+    return constructor(n, field=QQ)
+
+
+
+def _real_symmetric_basis(n, field=QQ):
+    """
+    Return a basis for the space of real symmetric n-by-n matrices.
+    """
+    # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
+    # coordinates.
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = Eij
+            else:
+                # Beware, orthogonal but not normalized!
+                Sij = Eij + Eij.transpose()
+            S.append(Sij)
+    return tuple(S)
+
+
+def _complex_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of complex Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
+        True
+
+    """
+    F = QuadraticField(-1, 'I')
+    I = F.gen()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_complex_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second one
+                # has a minus because it's conjugated.
+                Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_imag)
+    return tuple(S)
+
+
+def _quaternion_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of quaternion Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
+        True
+
+    """
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    I,J,K = Q.gens()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_quaternion_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second,
+                # third, and fourth ones have a minus because they're
+                # conjugated.
+                Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_I)
+                Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
+                S.append(Sij_J)
+                Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
+                S.append(Sij_K)
+    return tuple(S)
+
+
+def _mat2vec(m):
+        return vector(m.base_ring(), m.list())
+
+def _vec2mat(v):
+        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
+
+def _multiplication_table_from_matrix_basis(basis):
+    """
+    At least three of the five simple Euclidean Jordan algebras have the
+    symmetric multiplication (A,B) |-> (AB + BA)/2, where the
+    multiplication on the right is matrix multiplication. Given a basis
+    for the underlying matrix space, this function returns a
+    multiplication table (obtained by looping through the basis
+    elements) for an algebra of those matrices. A reordered copy
+    of the basis is also returned to work around the fact that
+    the ``span()`` in this function will change the order of the basis
+    from what we think it is, to... something else.
+    """
+    # In S^2, for example, we nominally have four coordinates even
+    # though the space is of dimension three only. The vector space V
+    # is supposed to hold the entire long vector, and the subspace W
+    # of V will be spanned by the vectors that arise from symmetric
+    # matrices. Thus for S^2, dim(V) == 4 and dim(W) == 3.
+    field = basis[0].base_ring()
+    dimension = basis[0].nrows()
+
+    V = VectorSpace(field, dimension**2)
+    W = V.span( _mat2vec(s) for s in basis )
+
+    # Taking the span above reorders our basis (thanks, jerk!) so we
+    # need to put our "matrix basis" in the same order as the
+    # (reordered) vector basis.
+    S = tuple( _vec2mat(b) for b in W.basis() )
+
+    Qs = []
+    for s in S:
+        # Brute force the multiplication-by-s matrix by looping
+        # through all elements of the basis and doing the computation
+        # to find out what the corresponding row should be. BEWARE:
+        # these multiplication tables won't be symmetric! It therefore
+        # becomes REALLY IMPORTANT that the underlying algebra
+        # constructor uses ROW vectors and not COLUMN vectors. That's
+        # why we're computing rows here and not columns.
+        Q_rows = []
+        for t in S:
+            this_row = _mat2vec((s*t + t*s)/2)
+            Q_rows.append(W.coordinates(this_row))
+        Q = matrix(field, W.dimension(), Q_rows)
+        Qs.append(Q)
+
+    return (Qs, S)
+
+
+def _embed_complex_matrix(M):
+    """
+    Embed the n-by-n complex matrix ``M`` into the space of real
+    matrices of size 2n-by-2n via the map the sends each entry `z = a +
+    bi` to the block matrix ``[[a,b],[-b,a]]``.
+
+    EXAMPLES::
+
+        sage: F = QuadraticField(-1,'i')
+        sage: x1 = F(4 - 2*i)
+        sage: x2 = F(1 + 2*i)
+        sage: x3 = F(-i)
+        sage: x4 = F(6)
+        sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
+        sage: _embed_complex_matrix(M)
+        [ 4 -2| 1  2]
+        [ 2  4|-2  1]
+        [-----+-----]
+        [ 0 -1| 6  0]
+        [ 1  0| 0  6]
+
+    TESTS:
+
+    Embedding is a homomorphism (isomorphism, in fact)::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(5)
+        sage: F = QuadraticField(-1, 'i')
+        sage: X = random_matrix(F, n)
+        sage: Y = random_matrix(F, n)
+        sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
+        sage: expected = _embed_complex_matrix(X*Y)
+        sage: actual == expected
+        True
+
+    """
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+    field = M.base_ring()
+    blocks = []
+    for z in M.list():
+        a = z.real()
+        b = z.imag()
+        blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+
+    # We can drop the imaginaries here.
+    return block_matrix(field.base_ring(), n, blocks)
+
+
+def _unembed_complex_matrix(M):
+    """
+    The inverse of _embed_complex_matrix().
+
+    EXAMPLES::
+
+        sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
+        ....:                 [-2,  1,  -4,  3],
+        ....:                 [ 9,  10, 11, 12],
+        ....:                 [-10, 9, -12, 11] ])
+        sage: _unembed_complex_matrix(A)
+        [  2*i + 1   4*i + 3]
+        [ 10*i + 9 12*i + 11]
+
+    TESTS:
+
+    Unembedding is the inverse of embedding::
+
+        sage: set_random_seed()
+        sage: F = QuadraticField(-1, 'i')
+        sage: M = random_matrix(F, 3)
+        sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
+        True
+
+    """
+    n = ZZ(M.nrows())
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+    if not n.mod(2).is_zero():
+        raise ValueError("the matrix 'M' must be a complex embedding")
+
+    F = QuadraticField(-1, 'i')
+    i = F.gen()
+
+    # Go top-left to bottom-right (reading order), converting every
+    # 2-by-2 block we see to a single complex element.
+    elements = []
+    for k in xrange(n/2):
+        for j in xrange(n/2):
+            submat = M[2*k:2*k+2,2*j:2*j+2]
+            if submat[0,0] != submat[1,1]:
+                raise ValueError('bad on-diagonal submatrix')
+            if submat[0,1] != -submat[1,0]:
+                raise ValueError('bad off-diagonal submatrix')
+            z = submat[0,0] + submat[0,1]*i
+            elements.append(z)
+
+    return matrix(F, n/2, elements)
+
+
+def _embed_quaternion_matrix(M):
+    """
+    Embed the n-by-n quaternion matrix ``M`` into the space of real
+    matrices of size 4n-by-4n by first sending each quaternion entry
+    `z = a + bi + cj + dk` to the block-complex matrix
+    ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
+    a real matrix.
+
+    EXAMPLES::
+
+        sage: Q = QuaternionAlgebra(QQ,-1,-1)
+        sage: i,j,k = Q.gens()
+        sage: x = 1 + 2*i + 3*j + 4*k
+        sage: M = matrix(Q, 1, [[x]])
+        sage: _embed_quaternion_matrix(M)
+        [ 1  2  3  4]
+        [-2  1 -4  3]
+        [-3  4  1 -2]
+        [-4 -3  2  1]
+
+    Embedding is a homomorphism (isomorphism, in fact)::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(5)
+        sage: Q = QuaternionAlgebra(QQ,-1,-1)
+        sage: X = random_matrix(Q, n)
+        sage: Y = random_matrix(Q, n)
+        sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
+        sage: expected = _embed_quaternion_matrix(X*Y)
+        sage: actual == expected
+        True
+
+    """
+    quaternions = M.base_ring()
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+
+    F = QuadraticField(-1, 'i')
+    i = F.gen()
+
+    blocks = []
+    for z in M.list():
+        t = z.coefficient_tuple()
+        a = t[0]
+        b = t[1]
+        c = t[2]
+        d = t[3]
+        cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
+                                    [-c + d*i, a - b*i]])
+        blocks.append(_embed_complex_matrix(cplx_matrix))
+
+    # We should have real entries by now, so use the realest field
+    # we've got for the return value.
+    return block_matrix(quaternions.base_ring(), n, blocks)
+
+
+def _unembed_quaternion_matrix(M):
+    """
+    The inverse of _embed_quaternion_matrix().
+
+    EXAMPLES::
+
+        sage: M = matrix(QQ, [[ 1,  2,  3,  4],
+        ....:                 [-2,  1, -4,  3],
+        ....:                 [-3,  4,  1, -2],
+        ....:                 [-4, -3,  2,  1]])
+        sage: _unembed_quaternion_matrix(M)
+        [1 + 2*i + 3*j + 4*k]
+
+    TESTS:
+
+    Unembedding is the inverse of embedding::
+
+        sage: set_random_seed()
+        sage: Q = QuaternionAlgebra(QQ, -1, -1)
+        sage: M = random_matrix(Q, 3)
+        sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
+        True
+
+    """
+    n = ZZ(M.nrows())
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+    if not n.mod(4).is_zero():
+        raise ValueError("the matrix 'M' must be a complex embedding")
+
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    i,j,k = Q.gens()
+
+    # Go top-left to bottom-right (reading order), converting every
+    # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
+    # quaternion block.
+    elements = []
+    for l in xrange(n/4):
+        for m in xrange(n/4):
+            submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
+            if submat[0,0] != submat[1,1].conjugate():
+                raise ValueError('bad on-diagonal submatrix')
+            if submat[0,1] != -submat[1,0].conjugate():
+                raise ValueError('bad off-diagonal submatrix')
+            z  = submat[0,0].real() + submat[0,0].imag()*i
+            z += submat[0,1].real()*j + submat[0,1].imag()*k
+            elements.append(z)
+
+    return matrix(Q, n/4, elements)
+
+
+# The usual inner product on R^n.
+def _usual_ip(x,y):
+    return x.vector().inner_product(y.vector())
+
+# The inner product used for the real symmetric simple EJA.
+# We keep it as a separate function because e.g. the complex
+# algebra uses the same inner product, except divided by 2.
+def _matrix_ip(X,Y):
+    X_mat = X.natural_representation()
+    Y_mat = Y.natural_representation()
+    return (X_mat*Y_mat).trace()
+
+
+class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
+    """
+    The rank-n simple EJA consisting of real symmetric n-by-n
+    matrices, the usual symmetric Jordan product, and the trace inner
+    product. It has dimension `(n^2 + n)/2` over the reals.
+
+    EXAMPLES::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: e0, e1, e2 = J.gens()
+        sage: e0*e0
+        e0
+        sage: e1*e1
+        e0 + e2
+        sage: e2*e2
+        e2
+
+    TESTS:
+
+    The degree of this algebra is `(n^2 + n) / 2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
+        sage: J.degree() == (n^2 + n)/2
+        True
+
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
+    """
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _real_symmetric_basis(n, field=field)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(RealSymmetricEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        return _matrix_ip(x,y)
+
+
+class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
+    """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2` over
+    the reals.
+
+    TESTS:
 
-    # Assuming associativity is wrong here, but it works to
-    # temporarily trick the Jordan algebra constructor into using the
-    # multiplication table.
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)
+    The degree of this algebra is `n^2`::
 
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianEJA(n)
+        sage: J.degree() == n^2
+        True
+
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
 
-def eja_ln(dimension, field=QQ):
     """
-    Return the Jordan algebra corresponding to the Lorentz "ice cream"
-    cone of the given ``dimension``.
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _complex_hermitian_basis(n)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(ComplexHermitianEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        # Since a+bi on the diagonal is represented as
+        #
+        #   a + bi  = [  a  b  ]
+        #             [ -b  a  ],
+        #
+        # we'll double-count the "a" entries if we take the trace of
+        # the embedding.
+        return _matrix_ip(x,y)/2
+
+
+class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
+    """
+    The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+    matrices, the usual symmetric Jordan product, and the
+    real-part-of-trace inner product. It has dimension `2n^2 - n` over
+    the reals.
+
+    TESTS:
+
+    The degree of this algebra is `n^2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: J.degree() == 2*(n^2) - n
+        True
+
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
+    """
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _quaternion_hermitian_basis(n)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(QuaternionHermitianEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        # Since a+bi+cj+dk on the diagonal is represented as
+        #
+        #   a + bi +cj + dk = [  a  b  c  d]
+        #                     [ -b  a -d  c]
+        #                     [ -c  d  a -b]
+        #                     [ -d -c  b  a],
+        #
+        # we'll quadruple-count the "a" entries if we take the trace of
+        # the embedding.
+        return _matrix_ip(x,y)/4
+
+
+class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
+    """
+    The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+    with the usual inner product and jordan product ``x*y =
+    (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+    the reals.
 
     EXAMPLES:
 
     This multiplication table can be verified by hand::
 
-        sage: J = eja_ln(4)
+        sage: J = JordanSpinEJA(4)
         sage: e0,e1,e2,e3 = J.gens()
         sage: e0*e0
         e0
@@ -154,25 +1950,27 @@ def eja_ln(dimension, field=QQ):
         sage: e2*e3
         0
 
-    In one dimension, this is the reals under multiplication::
+    """
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        Qs = []
+        id_matrix = identity_matrix(field, n)
+        for i in xrange(n):
+            ei = id_matrix.column(i)
+            Qi = zero_matrix(field, n)
+            Qi.set_row(0, ei)
+            Qi.set_column(0, ei)
+            Qi += diagonal_matrix(n, [ei[0]]*n)
+            # The addition of the diagonal matrix adds an extra ei[0] in the
+            # upper-left corner of the matrix.
+            Qi[0,0] = Qi[0,0] * ~field(2)
+            Qs.append(Qi)
 
-      sage: J1 = eja_ln(1)
-      sage: J2 = eja_rn(1)
-      sage: J1 == J2
-      True
+        # The rank of the spin algebra is two, unless we're in a
+        # one-dimensional ambient space (because the rank is bounded by
+        # the ambient dimension).
+        fdeja = super(JordanSpinEJA, cls)
+        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
 
-    """
-    Qs = []
-    id_matrix = identity_matrix(field,dimension)
-    for i in xrange(dimension):
-        ei = id_matrix.column(i)
-        Qi = zero_matrix(field,dimension)
-        Qi.set_row(0, ei)
-        Qi.set_column(0, ei)
-        Qi += diagonal_matrix(dimension, [ei[0]]*dimension)
-        # The addition of the diagonal matrix adds an extra ei[0] in the
-        # upper-left corner of the matrix.
-        Qi[0,0] = Qi[0,0] * ~field(2)
-        Qs.append(Qi)
-
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)
+    def inner_product(self, x, y):
+        return _usual_ip(x,y)