]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: get the quaternions working.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index ca344edc709352dea2d1940a7646e058066d4b8d..b8c7a912b1ded8149f7aefdf14b90b99d1056b2b 100644 (file)
@@ -94,6 +94,20 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         The inner product associated with this Euclidean Jordan algebra.
 
         Will default to the trace inner product if nothing else.
+
+        EXAMPLES:
+
+        The inner product must satisfy its axiom for this algebra to truly
+        be a Euclidean Jordan Algebra::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            True
+
         """
         if (not x in self) or (not y in self):
             raise TypeError("arguments must live in this algebra")
@@ -160,6 +174,51 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         An element of a Euclidean Jordan algebra.
         """
 
+        def __init__(self, A, elt=None):
+            """
+            EXAMPLES:
+
+            The identity in `S^n` is converted to the identity in the EJA::
+
+                sage: J = RealSymmetricSimpleEJA(3)
+                sage: I = identity_matrix(QQ,3)
+                sage: J(I) == J.one()
+                True
+
+            This skew-symmetric matrix can't be represented in the EJA::
+
+                sage: J = RealSymmetricSimpleEJA(3)
+                sage: A = matrix(QQ,3, lambda i,j: i-j)
+                sage: J(A)
+                Traceback (most recent call last):
+                ...
+                ArithmeticError: vector is not in free module
+
+            """
+            # Goal: if we're given a matrix, and if it lives in our
+            # parent algebra's "natural ambient space," convert it
+            # into an algebra element.
+            #
+            # The catch is, we make a recursive call after converting
+            # the given matrix into a vector that lives in the algebra.
+            # This we need to try the parent class initializer first,
+            # to avoid recursing forever if we're given something that
+            # already fits into the algebra, but also happens to live
+            # in the parent's "natural ambient space" (this happens with
+            # vectors in R^n).
+            try:
+                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
+            except ValueError:
+                natural_basis = A.natural_basis()
+                if elt in natural_basis[0].matrix_space():
+                    # Thanks for nothing! Matrix spaces aren't vector
+                    # spaces in Sage, so we have to figure out its
+                    # natural-basis coordinates ourselves.
+                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
+                    W = V.span( _mat2vec(s) for s in natural_basis )
+                    coords =  W.coordinates(_mat2vec(elt))
+                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
+
         def __pow__(self, n):
             """
             Return ``self`` raised to the power ``n``.
@@ -244,6 +303,30 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: J(x).inner_product(J(y))
                 32
 
+            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
+            multiplication is the usual matrix multiplication in `S^n`,
+            so the inner product of the identity matrix with itself
+            should be the `n`::
+
+                sage: J = RealSymmetricSimpleEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Likewise, the inner product on `C^n` is `<X,Y> =
+            Re(trace(X*Y))`, where we must necessarily take the real
+            part because the product of Hermitian matrices may not be
+            Hermitian::
+
+                sage: J = ComplexHermitianSimpleEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Ditto for the quaternions::
+
+                sage: J = QuaternionHermitianSimpleEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
             TESTS:
 
             Ensure that we can always compute an inner product, and that
@@ -597,6 +680,25 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 [0 0 0 0 1 0]
                 [0 0 0 0 0 1]
 
+            ::
+
+                sage: J = QuaternionHermitianSimpleEJA(3)
+                sage: J.one()
+                e0 + e9 + e14
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0 0 0 0 0 0 0]
+                [0 1 0 0 0 0 0 0 0 0 0 0]
+                [0 0 1 0 0 0 0 0 0 0 0 0]
+                [0 0 0 1 0 0 0 0 0 0 0 0]
+                [0 0 0 0 1 0 0 0 0 0 0 0]
+                [0 0 0 0 0 1 0 0 0 0 0 0]
+                [0 0 0 0 0 0 1 0 0 0 0 0]
+                [0 0 0 0 0 0 0 1 0 0 0 0]
+                [0 0 0 0 0 0 0 0 1 0 0 0]
+                [0 0 0 0 0 0 0 0 0 1 0 0]
+                [0 0 0 0 0 0 0 0 0 0 1 0]
+                [0 0 0 0 0 0 0 0 0 0 0 1]
+
             """
             B = self.parent().natural_basis()
             W = B[0].matrix_space()
@@ -941,13 +1043,10 @@ def eja_rn(dimension, field=QQ):
     Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
            for i in xrange(dimension) ]
 
-    # The usual inner product on R^n.
-    ip = lambda x, y: x.vector().inner_product(y.vector())
-
     return FiniteDimensionalEuclideanJordanAlgebra(field,
                                                    Qs,
                                                    rank=dimension,
-                                                   inner_product=ip)
+                                                   inner_product=_usual_ip)
 
 
 
@@ -968,6 +1067,12 @@ def random_eja():
       * The ``n``-by-``n`` rational symmetric matrices with the symmetric
         product.
 
+      * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
+        in the space of ``2n``-by-``2n`` real symmetric matrices.
+
+      * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
+        in the space of ``4n``-by-``4n`` real symmetric matrices.
+
     Later this might be extended to return Cartesian products of the
     EJAs above.
 
@@ -981,7 +1086,8 @@ def random_eja():
     constructor = choice([eja_rn,
                           JordanSpinSimpleEJA,
                           RealSymmetricSimpleEJA,
-                          ComplexHermitianSimpleEJA])
+                          ComplexHermitianSimpleEJA,
+                          QuaternionHermitianSimpleEJA])
     return constructor(n, field=QQ)
 
 
@@ -1042,6 +1148,54 @@ def _complex_hermitian_basis(n, field=QQ):
     return tuple(S)
 
 
+def _quaternion_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of quaternion Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
+        True
+
+    """
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    I,J,K = Q.gens()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_quaternion_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second,
+                # third, and fourth ones have a minus because they're
+                # conjugated.
+                Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_I)
+                Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
+                S.append(Sij_J)
+                Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
+                S.append(Sij_K)
+    return tuple(S)
+
+
+def _mat2vec(m):
+        return vector(m.base_ring(), m.list())
+
+def _vec2mat(v):
+        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
+
 def _multiplication_table_from_matrix_basis(basis):
     """
     At least three of the five simple Euclidean Jordan algebras have the
@@ -1062,19 +1216,13 @@ def _multiplication_table_from_matrix_basis(basis):
     field = basis[0].base_ring()
     dimension = basis[0].nrows()
 
-    def mat2vec(m):
-        return vector(field, m.list())
-
-    def vec2mat(v):
-        return matrix(field, dimension, v.list())
-
     V = VectorSpace(field, dimension**2)
-    W = V.span( mat2vec(s) for s in basis )
+    W = V.span( _mat2vec(s) for s in basis )
 
     # Taking the span above reorders our basis (thanks, jerk!) so we
     # need to put our "matrix basis" in the same order as the
     # (reordered) vector basis.
-    S = tuple( vec2mat(b) for b in W.basis() )
+    S = tuple( _vec2mat(b) for b in W.basis() )
 
     Qs = []
     for s in S:
@@ -1087,7 +1235,7 @@ def _multiplication_table_from_matrix_basis(basis):
         # why we're computing rows here and not columns.
         Q_rows = []
         for t in S:
-            this_row = mat2vec((s*t + t*s)/2)
+            this_row = _mat2vec((s*t + t*s)/2)
             Q_rows.append(W.coordinates(this_row))
         Q = matrix(field, W.dimension(), Q_rows)
         Qs.append(Q)
@@ -1108,13 +1256,13 @@ def _embed_complex_matrix(M):
         sage: x2 = F(1 + 2*i)
         sage: x3 = F(-i)
         sage: x4 = F(6)
-        sage: M = matrix(F,2,[x1,x2,x3,x4])
+        sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
         sage: _embed_complex_matrix(M)
-        [ 4  2| 1 -2]
-        [-2  4| 2  1]
+        [ 4 -2| 1  2]
+        [ 2  4|-2  1]
         [-----+-----]
-        [ 0  1| 6  0]
-        [-1  0| 0  6]
+        [ 0 -1| 6  0]
+        [ 1  0| 0  6]
 
     """
     n = M.nrows()
@@ -1125,7 +1273,7 @@ def _embed_complex_matrix(M):
     for z in M.list():
         a = z.real()
         b = z.imag()
-        blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
+        blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
 
     # We can drop the imaginaries here.
     return block_matrix(field.base_ring(), n, blocks)
@@ -1142,8 +1290,17 @@ def _unembed_complex_matrix(M):
         ....:                 [ 9,  10, 11, 12],
         ....:                 [-10, 9, -12, 11] ])
         sage: _unembed_complex_matrix(A)
-        [  -2*i + 1   -4*i + 3]
-        [ -10*i + 9 -12*i + 11]
+        [  2*i + 1   4*i + 3]
+        [ 10*i + 9 12*i + 11]
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: F = QuadraticField(-1, 'i')
+        sage: M = random_matrix(F, 3)
+        sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
+        True
+
     """
     n = ZZ(M.nrows())
     if M.ncols() != n:
@@ -1161,15 +1318,122 @@ def _unembed_complex_matrix(M):
         for j in xrange(n/2):
             submat = M[2*k:2*k+2,2*j:2*j+2]
             if submat[0,0] != submat[1,1]:
-                raise ArgumentError('bad real submatrix')
+                raise ValueError('bad on-diagonal submatrix')
             if submat[0,1] != -submat[1,0]:
-                raise ArgumentError('bad imag submatrix')
-            z = submat[0,0] + submat[1,0]*i
+                raise ValueError('bad off-diagonal submatrix')
+            z = submat[0,0] + submat[0,1]*i
             elements.append(z)
 
     return matrix(F, n/2, elements)
 
 
+def _embed_quaternion_matrix(M):
+    """
+    Embed the n-by-n quaternion matrix ``M`` into the space of real
+    matrices of size 4n-by-4n by first sending each quaternion entry
+    `z = a + bi + cj + dk` to the block-complex matrix
+    ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
+    a real matrix.
+
+    EXAMPLES::
+
+        sage: Q = QuaternionAlgebra(QQ,-1,-1)
+        sage: i,j,k = Q.gens()
+        sage: x = 1 + 2*i + 3*j + 4*k
+        sage: M = matrix(Q, 1, [[x]])
+        sage: _embed_quaternion_matrix(M)
+        [ 1  2  3  4]
+        [-2  1 -4  3]
+        [-3  4  1 -2]
+        [-4 -3  2  1]
+
+    """
+    quaternions = M.base_ring()
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+
+    F = QuadraticField(-1, 'i')
+    i = F.gen()
+
+    blocks = []
+    for z in M.list():
+        t = z.coefficient_tuple()
+        a = t[0]
+        b = t[1]
+        c = t[2]
+        d = t[3]
+        cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
+                                    [-c + d*i, a - b*i]])
+        blocks.append(_embed_complex_matrix(cplx_matrix))
+
+    # We should have real entries by now, so use the realest field
+    # we've got for the return value.
+    return block_matrix(quaternions.base_ring(), n, blocks)
+
+
+def _unembed_quaternion_matrix(M):
+    """
+    The inverse of _embed_quaternion_matrix().
+
+    EXAMPLES::
+
+        sage: M = matrix(QQ, [[ 1,  2,  3,  4],
+        ....:                 [-2,  1, -4,  3],
+        ....:                 [-3,  4,  1, -2],
+        ....:                 [-4, -3,  2,  1]])
+        sage: _unembed_quaternion_matrix(M)
+        [1 + 2*i + 3*j + 4*k]
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: Q = QuaternionAlgebra(QQ, -1, -1)
+        sage: M = random_matrix(Q, 3)
+        sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
+        True
+
+    """
+    n = ZZ(M.nrows())
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+    if not n.mod(4).is_zero():
+        raise ValueError("the matrix 'M' must be a complex embedding")
+
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    i,j,k = Q.gens()
+
+    # Go top-left to bottom-right (reading order), converting every
+    # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
+    # quaternion block.
+    elements = []
+    for l in xrange(n/4):
+        for m in xrange(n/4):
+            submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
+            if submat[0,0] != submat[1,1].conjugate():
+                raise ValueError('bad on-diagonal submatrix')
+            if submat[0,1] != -submat[1,0].conjugate():
+                raise ValueError('bad off-diagonal submatrix')
+            z  = submat[0,0].real() + submat[0,0].imag()*i
+            z += submat[0,1].real()*j + submat[0,1].imag()*k
+            elements.append(z)
+
+    return matrix(Q, n/4, elements)
+
+
+# The usual inner product on R^n.
+def _usual_ip(x,y):
+    return x.vector().inner_product(y.vector())
+
+# The inner product used for the real symmetric simple EJA.
+# We keep it as a separate function because e.g. the complex
+# algebra uses the same inner product, except divided by 2.
+def _matrix_ip(X,Y):
+    X_mat = X.natural_representation()
+    Y_mat = Y.natural_representation()
+    return (X_mat*Y_mat).trace()
+
+
 def RealSymmetricSimpleEJA(n, field=QQ):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
@@ -1197,6 +1461,22 @@ def RealSymmetricSimpleEJA(n, field=QQ):
         sage: J.degree() == (n^2 + n)/2
         True
 
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricSimpleEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
     S = _real_symmetric_basis(n, field=field)
     (Qs, T) = _multiplication_table_from_matrix_basis(S)
@@ -1204,7 +1484,8 @@ def RealSymmetricSimpleEJA(n, field=QQ):
     return FiniteDimensionalEuclideanJordanAlgebra(field,
                                                    Qs,
                                                    rank=n,
-                                                   natural_basis=T)
+                                                   natural_basis=T,
+                                                   inner_product=_matrix_ip)
 
 
 def ComplexHermitianSimpleEJA(n, field=QQ):
@@ -1224,23 +1505,96 @@ def ComplexHermitianSimpleEJA(n, field=QQ):
         sage: J.degree() == n^2
         True
 
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianSimpleEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
     S = _complex_hermitian_basis(n)
     (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+    # Since a+bi on the diagonal is represented as
+    #
+    #   a + bi  = [  a  b  ]
+    #             [ -b  a  ],
+    #
+    # we'll double-count the "a" entries if we take the trace of
+    # the embedding.
+    ip = lambda X,Y: _matrix_ip(X,Y)/2
+
     return FiniteDimensionalEuclideanJordanAlgebra(field,
                                                    Qs,
                                                    rank=n,
-                                                   natural_basis=T)
+                                                   natural_basis=T,
+                                                   inner_product=ip)
 
 
-def QuaternionHermitianSimpleEJA(n):
+def QuaternionHermitianSimpleEJA(n, field=QQ):
     """
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
     real-part-of-trace inner product. It has dimension `2n^2 - n` over
     the reals.
+
+    TESTS:
+
+    The degree of this algebra is `n^2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianSimpleEJA(n)
+        sage: J.degree() == 2*(n^2) - n
+        True
+
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianSimpleEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
-    pass
+    S = _quaternion_hermitian_basis(n)
+    (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+    # Since a+bi+cj+dk on the diagonal is represented as
+    #
+    #   a + bi +cj + dk = [  a  b  c  d]
+    #                     [ -b  a -d  c]
+    #                     [ -c  d  a -b]
+    #                     [ -d -c  b  a],
+    #
+    # we'll quadruple-count the "a" entries if we take the trace of
+    # the embedding.
+    ip = lambda X,Y: _matrix_ip(X,Y)/4
+
+    return FiniteDimensionalEuclideanJordanAlgebra(field,
+                                                   Qs,
+                                                   rank=n,
+                                                   natural_basis=T,
+                                                   inner_product=ip)
+
 
 def OctonionHermitianSimpleEJA(n):
     """
@@ -1277,6 +1631,13 @@ def JordanSpinSimpleEJA(n, field=QQ):
         sage: e2*e3
         0
 
+    In one dimension, this is the reals under multiplication::
+
+        sage: J1 = JordanSpinSimpleEJA(1)
+        sage: J2 = eja_rn(1)
+        sage: J1 == J2
+        True
+
     """
     Qs = []
     id_matrix = identity_matrix(field, n)
@@ -1291,13 +1652,10 @@ def JordanSpinSimpleEJA(n, field=QQ):
         Qi[0,0] = Qi[0,0] * ~field(2)
         Qs.append(Qi)
 
-    # The usual inner product on R^n.
-    ip = lambda x, y: x.vector().inner_product(y.vector())
-
     # The rank of the spin factor algebra is two, UNLESS we're in a
     # one-dimensional ambient space (the rank is bounded by the
     # ambient dimension).
     return FiniteDimensionalEuclideanJordanAlgebra(field,
                                                    Qs,
                                                    rank=min(n,2),
-                                                   inner_product=ip)
+                                                   inner_product=_usual_ip)