]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: implement element trace in terms of charpoly coefficients.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 8f508bc305304d249440294267cc56f6099c631b..a0ba1c68bb30bf54383807c52961ad82e4a69f03 100644 (file)
@@ -87,52 +87,100 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         return fmt.format(self.degree(), self.base_ring())
 
 
-    def characteristic_polynomial(self):
+
+    @cached_method
+    def _charpoly_coeff(self, i):
+        """
+        Return the coefficient polynomial "a_{i}" of this algebra's
+        general characteristic polynomial.
+
+        Having this be a separate cached method lets us compute and
+        store the trace/determinant (a_{r-1} and a_{0} respectively)
+        separate from the entire characteristic polynomial.
+        """
+        (A_of_x, x) = self._charpoly_matrix()
+        R = A_of_x.base_ring()
+        A_cols = A_of_x.columns()
+        A_cols[i] = (x**self.rank()).vector()
+        numerator = column_matrix(A_of_x.base_ring(), A_cols).det()
+        denominator = A_of_x.det()
+
+        # We're relying on the theory here to ensure that each a_i is
+        # indeed back in R, and the added negative signs are to make
+        # the whole charpoly expression sum to zero.
+        return R(-numerator/denominator)
+
+
+    @cached_method
+    def _charpoly_matrix(self):
+        """
+        Compute the matrix whose entries A_ij are polynomials in
+        X1,...,XN. This same matrix is used in more than one method and
+        it's not so fast to construct.
+        """
         r = self.rank()
         n = self.dimension()
 
+        # Construct a new algebra over a multivariate polynomial ring...
         names = ['X' + str(i) for i in range(1,n+1)]
         R = PolynomialRing(self.base_ring(), names)
         J = FiniteDimensionalEuclideanJordanAlgebra(R,
                                                     self._multiplication_table,
                                                     rank=r)
-        x0 = J.zero()
-        c = 1
-        for g in J.gens():
-            x0 += c*g
-            c +=1
-        if not x0.is_regular():
-            raise ValueError("don't know a regular element")
-
-        # Get the vector space (as opposed to module) so that
-        # span_of_basis() works.
-        V = x0.vector().parent().ambient_vector_space()
-        V1 = V.span_of_basis( (x0**k).vector() for k in range(r) )
-        B = V1.basis() + V1.complement().basis()
-        W = V.span_of_basis(B)
-
-        def e(k):
-            # The coordinates of e_k with respect to the basis B.
-            # But, the e_k are elements of B...
-            return identity_matrix(J.base_ring(), n).column(k-1).column()
-
-        # A matrix implementation 1
+
+        idmat = identity_matrix(J.base_ring(), n)
+
         x = J(vector(R, R.gens()))
-        l1 = [column_matrix(W.coordinates((x**k).vector())) for k in range(r)]
-        l2 = [e(k) for k in range(r+1, n+1)]
-        A_of_x = block_matrix(1, n, (l1 + l2))
-        xr = W.coordinates((x**r).vector())
-        a = []
-        for i in range(n):
-            A_cols = A.columns()
-            A_cols[i] = xr
-            numerator = column_matrix(A.base_ring(), A_cols).det()
-            denominator = A.det()
-            ai = numerator/denominator
-            a.append(ai)
-
-        # Note: all entries past the rth should be zero.
-        return a
+        l1 = [column_matrix((x**k).vector()) for k in range(r)]
+        l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
+        A_of_x = block_matrix(R, 1, n, (l1 + l2))
+        return (A_of_x, x)
+
+
+    @cached_method
+    def characteristic_polynomial(self):
+        """
+        EXAMPLES:
+
+        The characteristic polynomial in the spin algebra is given in
+        Alizadeh, Example 11.11::
+
+            sage: J = JordanSpinEJA(3)
+            sage: p = J.characteristic_polynomial(); p
+            X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
+            sage: xvec = J.one().vector()
+            sage: p(*xvec)
+            t^2 - 2*t + 1
+
+        """
+        r = self.rank()
+        n = self.dimension()
+
+        # The list of coefficient polynomials a_1, a_2, ..., a_n.
+        a = [ self._charpoly_coeff(i) for i in range(n) ]
+
+        # We go to a bit of trouble here to reorder the
+        # indeterminates, so that it's easier to evaluate the
+        # characteristic polynomial at x's coordinates and get back
+        # something in terms of t, which is what we want.
+        R = a[0].parent()
+        S = PolynomialRing(self.base_ring(),'t')
+        t = S.gen(0)
+        S = PolynomialRing(S, R.variable_names())
+        t = S(t)
+
+        # Note: all entries past the rth should be zero. The
+        # coefficient of the highest power (x^r) is 1, but it doesn't
+        # appear in the solution vector which contains coefficients
+        # for the other powers (to make them sum to x^r).
+        if (r < n):
+            a[r] = 1 # corresponds to x^r
+        else:
+            # When the rank is equal to the dimension, trying to
+            # assign a[r] goes out-of-bounds.
+            a.append(1) # corresponds to x^r
+
+        return sum( a[k]*(t**k) for k in range(len(a)) )
 
 
     def inner_product(self, x, y):
@@ -315,19 +363,82 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 return A( (self.operator_matrix()**(n-1))*self.vector() )
 
 
+        def apply_univariate_polynomial(self, p):
+            """
+            Apply the univariate polynomial ``p`` to this element.
+
+            A priori, SageMath won't allow us to apply a univariate
+            polynomial to an element of an EJA, because we don't know
+            that EJAs are rings (they are usually not associative). Of
+            course, we know that EJAs are power-associative, so the
+            operation is ultimately kosher. This function sidesteps
+            the CAS to get the answer we want and expect.
+
+            EXAMPLES::
+
+                sage: R = PolynomialRing(QQ, 't')
+                sage: t = R.gen(0)
+                sage: p = t^4 - t^3 + 5*t - 2
+                sage: J = RealCartesianProductEJA(5)
+                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
+                True
+
+            TESTS:
+
+            We should always get back an element of the algebra::
+
+                sage: set_random_seed()
+                sage: p = PolynomialRing(QQ, 't').random_element()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: x.apply_univariate_polynomial(p) in J
+                True
+
+            """
+            if len(p.variables()) > 1:
+                raise ValueError("not a univariate polynomial")
+            P = self.parent()
+            R = P.base_ring()
+            # Convert the coeficcients to the parent's base ring,
+            # because a priori they might live in an (unnecessarily)
+            # larger ring for which P.sum() would fail below.
+            cs = [ R(c) for c in p.coefficients(sparse=False) ]
+            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
+
+
         def characteristic_polynomial(self):
             """
-            Return my characteristic polynomial (if I'm a regular
-            element).
+            Return the characteristic polynomial of this element.
+
+            EXAMPLES:
+
+            The rank of `R^3` is three, and the minimal polynomial of
+            the identity element is `(t-1)` from which it follows that
+            the characteristic polynomial should be `(t-1)^3`::
+
+                sage: J = RealCartesianProductEJA(3)
+                sage: J.one().characteristic_polynomial()
+                t^3 - 3*t^2 + 3*t - 1
+
+            Likewise, the characteristic of the zero element in the
+            rank-three algebra `R^{n}` should be `t^{3}`::
+
+                sage: J = RealCartesianProductEJA(3)
+                sage: J.zero().characteristic_polynomial()
+                t^3
+
+            The characteristic polynomial of an element should evaluate
+            to zero on that element::
+
+                sage: set_random_seed()
+                sage: x = RealCartesianProductEJA(3).random_element()
+                sage: p = x.characteristic_polynomial()
+                sage: x.apply_univariate_polynomial(p)
+                0
 
-            Eventually this should be implemented in terms of the parent
-            algebra's characteristic polynomial that works for ALL
-            elements.
             """
-            if self.is_regular():
-                return self.minimal_polynomial()
-            else:
-                raise NotImplementedError('irregular element')
+            p = self.parent().characteristic_polynomial()
+            return p(*self.vector())
 
 
         def inner_product(self, other):
@@ -724,6 +835,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: bool(actual == expected)
                 True
 
+            The minimal polynomial should always kill its element::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: p = x.minimal_polynomial()
+                sage: x.apply_univariate_polynomial(p)
+                0
+
             """
             V = self.span_of_powers()
             assoc_subalg = self.subalgebra_generated_by()
@@ -1071,17 +1190,34 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             EXAMPLES::
 
                 sage: J = JordanSpinEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = e0 + e1 + e2
+                sage: x = sum(J.gens())
                 sage: x.trace()
                 2
 
+            ::
+
+                sage: J = RealCartesianProductEJA(5)
+                sage: J.one().trace()
+                5
+
+            TESTS:
+
+            The trace of an element is a real number::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.random_element().trace() in J.base_ring()
+                True
+
             """
-            cs = self.characteristic_polynomial().coefficients(sparse=False)
-            if len(cs) >= 2:
-                return -1*cs[-2]
-            else:
-                raise ValueError('charpoly had fewer than 2 coefficients')
+            P = self.parent()
+            r = P.rank()
+            p = P._charpoly_coeff(r-1)
+            # The _charpoly_coeff function already adds the factor of
+            # -1 to ensure that _charpoly_coeff(r-1) is really what
+            # appears in front of t^{r-1} in the charpoly. However,
+            # we want the negative of THAT for the trace.
+            return -p(*self.vector())
 
 
         def trace_inner_product(self, other):
@@ -1172,12 +1308,17 @@ def random_eja():
         Euclidean Jordan algebra of degree...
 
     """
-    n = ZZ.random_element(1,5)
-    constructor = choice([RealCartesianProductEJA,
-                          JordanSpinEJA,
-                          RealSymmetricEJA,
-                          ComplexHermitianEJA,
-                          QuaternionHermitianEJA])
+
+    # The max_n component lets us choose different upper bounds on the
+    # value "n" that gets passed to the constructor. This is needed
+    # because e.g. R^{10} is reasonable to test, while the Hermitian
+    # 10-by-10 quaternion matrices are not.
+    (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
+                                   (JordanSpinEJA, 6),
+                                   (RealSymmetricEJA, 5),
+                                   (ComplexHermitianEJA, 4),
+                                   (QuaternionHermitianEJA, 3)])
+    n = ZZ.random_element(1, max_n)
     return constructor(n, field=QQ)