]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: use 't' for the minimal polynomial variable name.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 32481621975ab3aabc217eae5ef72d9abf191980..8f508bc305304d249440294267cc56f6099c631b 100644 (file)
@@ -21,8 +21,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                               assume_associative=False,
                               category=None,
                               rank=None,
-                              natural_basis=None,
-                              inner_product=None):
+                              natural_basis=None):
         n = len(mult_table)
         mult_table = [b.base_extend(field) for b in mult_table]
         for b in mult_table:
@@ -46,8 +45,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                                  names=names,
                                  category=cat,
                                  rank=rank,
-                                 natural_basis=natural_basis,
-                                 inner_product=inner_product)
+                                 natural_basis=natural_basis)
 
 
     def __init__(self,
@@ -57,8 +55,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                  assume_associative=False,
                  category=None,
                  rank=None,
-                 natural_basis=None,
-                 inner_product=None):
+                 natural_basis=None):
         """
         EXAMPLES:
 
@@ -74,7 +71,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         self._rank = rank
         self._natural_basis = natural_basis
-        self._inner_product = inner_product
+        self._multiplication_table = mult_table
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
                      mult_table,
@@ -90,11 +87,61 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         return fmt.format(self.degree(), self.base_ring())
 
 
+    def characteristic_polynomial(self):
+        r = self.rank()
+        n = self.dimension()
+
+        names = ['X' + str(i) for i in range(1,n+1)]
+        R = PolynomialRing(self.base_ring(), names)
+        J = FiniteDimensionalEuclideanJordanAlgebra(R,
+                                                    self._multiplication_table,
+                                                    rank=r)
+        x0 = J.zero()
+        c = 1
+        for g in J.gens():
+            x0 += c*g
+            c +=1
+        if not x0.is_regular():
+            raise ValueError("don't know a regular element")
+
+        # Get the vector space (as opposed to module) so that
+        # span_of_basis() works.
+        V = x0.vector().parent().ambient_vector_space()
+        V1 = V.span_of_basis( (x0**k).vector() for k in range(r) )
+        B = V1.basis() + V1.complement().basis()
+        W = V.span_of_basis(B)
+
+        def e(k):
+            # The coordinates of e_k with respect to the basis B.
+            # But, the e_k are elements of B...
+            return identity_matrix(J.base_ring(), n).column(k-1).column()
+
+        # A matrix implementation 1
+        x = J(vector(R, R.gens()))
+        l1 = [column_matrix(W.coordinates((x**k).vector())) for k in range(r)]
+        l2 = [e(k) for k in range(r+1, n+1)]
+        A_of_x = block_matrix(1, n, (l1 + l2))
+        xr = W.coordinates((x**r).vector())
+        a = []
+        for i in range(n):
+            A_cols = A.columns()
+            A_cols[i] = xr
+            numerator = column_matrix(A.base_ring(), A_cols).det()
+            denominator = A.det()
+            ai = numerator/denominator
+            a.append(ai)
+
+        # Note: all entries past the rth should be zero.
+        return a
+
+
     def inner_product(self, x, y):
         """
         The inner product associated with this Euclidean Jordan algebra.
 
-        Will default to the trace inner product if nothing else.
+        Defaults to the trace inner product, but can be overridden by
+        subclasses if they are sure that the necessary properties are
+        satisfied.
 
         EXAMPLES:
 
@@ -112,10 +159,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         if (not x in self) or (not y in self):
             raise TypeError("arguments must live in this algebra")
-        if self._inner_product is None:
-            return x.trace_inner_product(y)
-        else:
-            return self._inner_product(x,y)
+        return x.trace_inner_product(y)
 
 
     def natural_basis(self):
@@ -497,8 +541,36 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             We can't use the superclass method because it relies on
             the algebra being associative.
+
+            ALGORITHM:
+
+            The usual way to do this is to check if the determinant is
+            zero, but we need the characteristic polynomial for the
+            determinant. The minimal polynomial is a lot easier to get,
+            so we use Corollary 2 in Chapter V of Koecher to check
+            whether or not the paren't algebra's zero element is a root
+            of this element's minimal polynomial.
+
+            TESTS:
+
+            The identity element is always invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().is_invertible()
+                True
+
+            The zero element is never invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.zero().is_invertible()
+                False
+
             """
-            return not self.det().is_zero()
+            zero = self.parent().zero()
+            p = self.minimal_polynomial()
+            return not (p(zero) == zero)
 
 
         def is_nilpotent(self):
@@ -603,14 +675,30 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         def minimal_polynomial(self):
             """
-            EXAMPLES::
+            Return the minimal polynomial of this element,
+            as a function of the variable `t`.
+
+            ALGORITHM:
+
+            We restrict ourselves to the associative subalgebra
+            generated by this element, and then return the minimal
+            polynomial of this element's operator matrix (in that
+            subalgebra). This works by Baes Proposition 2.3.16.
+
+            TESTS:
+
+            The minimal polynomial of the identity and zero elements are
+            always the same::
 
                 sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
+                sage: J = random_eja()
+                sage: J.one().minimal_polynomial()
+                t - 1
+                sage: J.zero().minimal_polynomial()
+                t
 
-            ::
+            The degree of an element is (by one definition) the degree
+            of its minimal polynomial::
 
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
@@ -631,31 +719,23 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: y0 = y.vector()[0]
                 sage: y_bar = y.vector()[1:]
                 sage: actual = y.minimal_polynomial()
-                sage: x = SR.symbol('x', domain='real')
-                sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
+                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
+                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
                 sage: bool(actual == expected)
                 True
 
             """
-            # The element we're going to call "minimal_polynomial()" on.
-            # Either myself, interpreted as an element of a finite-
-            # dimensional algebra, or an element of an associative
-            # subalgebra.
-            elt = None
-
-            if self.parent().is_associative():
-                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            else:
-                V = self.span_of_powers()
-                assoc_subalg = self.subalgebra_generated_by()
-                # Mis-design warning: the basis used for span_of_powers()
-                # and subalgebra_generated_by() must be the same, and in
-                # the same order!
-                elt = assoc_subalg(V.coordinates(self.vector()))
+            V = self.span_of_powers()
+            assoc_subalg = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            elt = assoc_subalg(V.coordinates(self.vector()))
 
-            # Recursive call, but should work since elt lives in an
-            # associative algebra.
-            return elt.minimal_polynomial()
+            # We get back a symbolic polynomial in 'x' but want a real
+            # polynomial in 't'.
+            p_of_x = elt.operator_matrix().minimal_polynomial()
+            return p_of_x.change_variable_name('t')
 
 
         def natural_representation(self):
@@ -858,7 +938,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             # The dimension of the subalgebra can't be greater than
             # the big algebra, so just put everything into a list
             # and let span() get rid of the excess.
-            V = self.vector().parent()
+            #
+            # We do the extra ambient_vector_space() in case we're messing
+            # with polynomials and the direct parent is a module.
+            V = self.vector().parent().ambient_vector_space()
             return V.span( (self**d).vector() for d in xrange(V.dimension()) )
 
 
@@ -927,7 +1010,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             TESTS::
 
                 sage: set_random_seed()
-                sage: J = eja_rn(5)
+                sage: J = RealCartesianProductEJA(5)
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
@@ -1011,16 +1094,20 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return (self*other).trace()
 
 
-def eja_rn(dimension, field=QQ):
+class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
 
+    Note: this is nothing more than the Cartesian product of ``n``
+    copies of the spin algebra. Once Cartesian product algebras
+    are implemented, this can go.
+
     EXAMPLES:
 
     This multiplication table can be verified by hand::
 
-        sage: J = eja_rn(3)
+        sage: J = RealCartesianProductEJA(3)
         sage: e0,e1,e2 = J.gens()
         sage: e0*e0
         e0
@@ -1036,19 +1123,21 @@ def eja_rn(dimension, field=QQ):
         e2
 
     """
-    # The FiniteDimensionalAlgebra constructor takes a list of
-    # matrices, the ith representing right multiplication by the ith
-    # basis element in the vector space. So if e_1 = (1,0,0), then
-    # right (Hadamard) multiplication of x by e_1 picks out the first
-    # component of x; and likewise for the ith basis element e_i.
-    Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
-           for i in xrange(dimension) ]
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        # The FiniteDimensionalAlgebra constructor takes a list of
+        # matrices, the ith representing right multiplication by the ith
+        # basis element in the vector space. So if e_1 = (1,0,0), then
+        # right (Hadamard) multiplication of x by e_1 picks out the first
+        # component of x; and likewise for the ith basis element e_i.
+        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
+               for i in xrange(n) ]
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,
-                                                   Qs,
-                                                   rank=dimension,
-                                                   inner_product=_usual_ip)
+        fdeja = super(RealCartesianProductEJA, cls)
+        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
 
+    def inner_product(self, x, y):
+        return _usual_ip(x,y)
 
 
 def random_eja():
@@ -1084,7 +1173,7 @@ def random_eja():
 
     """
     n = ZZ.random_element(1,5)
-    constructor = choice([eja_rn,
+    constructor = choice([RealCartesianProductEJA,
                           JordanSpinEJA,
                           RealSymmetricEJA,
                           ComplexHermitianEJA,
@@ -1685,18 +1774,11 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
             Qi[0,0] = Qi[0,0] * ~field(2)
             Qs.append(Qi)
 
+        # The rank of the spin algebra is two, unless we're in a
+        # one-dimensional ambient space (because the rank is bounded by
+        # the ambient dimension).
         fdeja = super(JordanSpinEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs)
-
-    def rank(self):
-        """
-        Return the rank of this Jordan Spin Algebra.
-
-        The rank of the spin algebra is two, unless we're in a
-        one-dimensional ambient space (because the rank is bounded by
-        the ambient dimension).
-        """
-        return min(self.dimension(),2)
+        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
 
     def inner_product(self, x, y):
         return _usual_ip(x,y)