]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: fix alphabetical ordering of element methods.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index c0b7787a535b7754c446fcb0046c300b21695579..8d9b27e974fff75f769579853d7ac60716d26298 100644 (file)
@@ -20,7 +20,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                               names='e',
                               assume_associative=False,
                               category=None,
-                              rank=None):
+                              rank=None,
+                              natural_basis=None):
         n = len(mult_table)
         mult_table = [b.base_extend(field) for b in mult_table]
         for b in mult_table:
@@ -43,7 +44,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                                  assume_associative=assume_associative,
                                  names=names,
                                  category=cat,
-                                 rank=rank)
+                                 rank=rank,
+                                 natural_basis=natural_basis)
 
 
     def __init__(self, field,
@@ -51,7 +53,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                  names='e',
                  assume_associative=False,
                  category=None,
-                 rank=None):
+                 rank=None,
+                 natural_basis=None):
         """
         EXAMPLES:
 
@@ -66,6 +69,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         """
         self._rank = rank
+        self._natural_basis = natural_basis
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
                      mult_table,
@@ -80,6 +84,49 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         fmt = "Euclidean Jordan algebra of degree {} over {}"
         return fmt.format(self.degree(), self.base_ring())
 
+
+    def natural_basis(self):
+        """
+        Return a more-natural representation of this algebra's basis.
+
+        Every finite-dimensional Euclidean Jordan Algebra is a direct
+        sum of five simple algebras, four of which comprise Hermitian
+        matrices. This method returns the original "natural" basis
+        for our underlying vector space. (Typically, the natural basis
+        is used to construct the multiplication table in the first place.)
+
+        Note that this will always return a matrix. The standard basis
+        in `R^n` will be returned as `n`-by-`1` column matrices.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricSimpleEJA(2)
+            sage: J.basis()
+            Family (e0, e1, e2)
+            sage: J.natural_basis()
+            (
+            [1 0]  [0 1]  [0 0]
+            [0 0], [1 0], [0 1]
+            )
+
+        ::
+
+            sage: J = JordanSpinSimpleEJA(2)
+            sage: J.basis()
+            Family (e0, e1)
+            sage: J.natural_basis()
+            (
+            [1]  [0]
+            [0], [1]
+            )
+
+        """
+        if self._natural_basis is None:
+            return tuple( b.vector().column() for b in self.basis() )
+        else:
+            return self._natural_basis
+
+
     def rank(self):
         """
         Return the rank of this EJA.
@@ -414,7 +461,93 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return self.span_of_powers().dimension()
 
 
-        def matrix(self):
+        def minimal_polynomial(self):
+            """
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.degree() == x.minimal_polynomial().degree()
+                True
+
+            ::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.degree() == x.minimal_polynomial().degree()
+                True
+
+            The minimal polynomial and the characteristic polynomial coincide
+            and are known (see Alizadeh, Example 11.11) for all elements of
+            the spin factor algebra that aren't scalar multiples of the
+            identity::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(2,10)
+                sage: J = JordanSpinSimpleEJA(n)
+                sage: y = J.random_element()
+                sage: while y == y.coefficient(0)*J.one():
+                ....:     y = J.random_element()
+                sage: y0 = y.vector()[0]
+                sage: y_bar = y.vector()[1:]
+                sage: actual = y.minimal_polynomial()
+                sage: x = SR.symbol('x', domain='real')
+                sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
+                sage: bool(actual == expected)
+                True
+
+            """
+            # The element we're going to call "minimal_polynomial()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.minimal_polynomial()
+
+
+        def natural_representation(self):
+            """
+            Return a more-natural representation of this element.
+
+            Every finite-dimensional Euclidean Jordan Algebra is a
+            direct sum of five simple algebras, four of which comprise
+            Hermitian matrices. This method returns the original
+            "natural" representation of this element as a Hermitian
+            matrix, if it has one. If not, you get the usual representation.
+
+            EXAMPLES::
+
+                sage: J = ComplexHermitianSimpleEJA(3)
+                sage: J.one()
+                e0 + e5 + e8
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0]
+                [0 1 0 0 0 0]
+                [0 0 1 0 0 0]
+                [0 0 0 1 0 0]
+                [0 0 0 0 1 0]
+                [0 0 0 0 0 1]
+
+            """
+            B = self.parent().natural_basis()
+            W = B[0].matrix_space()
+            return W.linear_combination(zip(self.vector(), B))
+
+
+        def operator_matrix(self):
             """
             Return the matrix that represents left- (or right-)
             multiplication by this element in the parent algebra.
@@ -480,71 +613,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
             return fda_elt.matrix().transpose()
 
-        #
-        # The plan is to eventually phase out "matrix()", which sounds
-        # too much like "matrix_representation()", in favor of the more-
-        # accurate "operator_matrix()". But we need to override matrix()
-        # to keep parent class methods happy in the meantime.
-        #
-        operator_matrix = matrix
-
-
-        def minimal_polynomial(self):
-            """
-            EXAMPLES::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            ::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinSimpleEJA(n)
-                sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: x = SR.symbol('x', domain='real')
-                sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
-                True
-
-            """
-            # The element we're going to call "minimal_polynomial()" on.
-            # Either myself, interpreted as an element of a finite-
-            # dimensional algebra, or an element of an associative
-            # subalgebra.
-            elt = None
-
-            if self.parent().is_associative():
-                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            else:
-                V = self.span_of_powers()
-                assoc_subalg = self.subalgebra_generated_by()
-                # Mis-design warning: the basis used for span_of_powers()
-                # and subalgebra_generated_by() must be the same, and in
-                # the same order!
-                elt = assoc_subalg(V.coordinates(self.vector()))
-
-            # Recursive call, but should work since elt lives in an
-            # associative algebra.
-            return elt.minimal_polynomial()
-
 
         def quadratic_representation(self, other=None):
             """
@@ -872,7 +940,7 @@ def _real_symmetric_basis(n, field=QQ):
                 # Beware, orthogonal but not normalized!
                 Sij = Eij + Eij.transpose()
             S.append(Sij)
-    return S
+    return tuple(S)
 
 
 def _complex_hermitian_basis(n, field=QQ):
@@ -909,7 +977,7 @@ def _complex_hermitian_basis(n, field=QQ):
                 S.append(Sij_real)
                 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
                 S.append(Sij_imag)
-    return S
+    return tuple(S)
 
 
 def _multiplication_table_from_matrix_basis(basis):
@@ -919,7 +987,10 @@ def _multiplication_table_from_matrix_basis(basis):
     multiplication on the right is matrix multiplication. Given a basis
     for the underlying matrix space, this function returns a
     multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices.
+    elements) for an algebra of those matrices. A reordered copy
+    of the basis is also returned to work around the fact that
+    the ``span()`` in this function will change the order of the basis
+    from what we think it is, to... something else.
     """
     # In S^2, for example, we nominally have four coordinates even
     # though the space is of dimension three only. The vector space V
@@ -941,7 +1012,7 @@ def _multiplication_table_from_matrix_basis(basis):
     # Taking the span above reorders our basis (thanks, jerk!) so we
     # need to put our "matrix basis" in the same order as the
     # (reordered) vector basis.
-    S = [ vec2mat(b) for b in W.basis() ]
+    S = tuple( vec2mat(b) for b in W.basis() )
 
     Qs = []
     for s in S:
@@ -959,7 +1030,7 @@ def _multiplication_table_from_matrix_basis(basis):
         Q = matrix(field, W.dimension(), Q_rows)
         Qs.append(Q)
 
-    return Qs
+    return (Qs, S)
 
 
 def _embed_complex_matrix(M):
@@ -1066,9 +1137,12 @@ def RealSymmetricSimpleEJA(n, field=QQ):
 
     """
     S = _real_symmetric_basis(n, field=field)
-    Qs = _multiplication_table_from_matrix_basis(S)
+    (Qs, T) = _multiplication_table_from_matrix_basis(S)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,
+                                                   Qs,
+                                                   rank=n,
+                                                   natural_basis=T)
 
 
 def ComplexHermitianSimpleEJA(n, field=QQ):
@@ -1090,8 +1164,11 @@ def ComplexHermitianSimpleEJA(n, field=QQ):
 
     """
     S = _complex_hermitian_basis(n)
-    Qs = _multiplication_table_from_matrix_basis(S)
-    return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
+    (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,
+                                                   Qs,
+                                                   rank=n,
+                                                   natural_basis=T)
 
 
 def QuaternionHermitianSimpleEJA(n):