]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: fix alphabetical ordering of element methods.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 0a53667c36284d3a07a218f30e37fae8334861a9..8d9b27e974fff75f769579853d7ac60716d26298 100644 (file)
@@ -20,7 +20,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                               names='e',
                               assume_associative=False,
                               category=None,
-                              rank=None):
+                              rank=None,
+                              natural_basis=None):
         n = len(mult_table)
         mult_table = [b.base_extend(field) for b in mult_table]
         for b in mult_table:
@@ -43,7 +44,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                                  assume_associative=assume_associative,
                                  names=names,
                                  category=cat,
-                                 rank=rank)
+                                 rank=rank,
+                                 natural_basis=natural_basis)
 
 
     def __init__(self, field,
@@ -51,8 +53,23 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                  names='e',
                  assume_associative=False,
                  category=None,
-                 rank=None):
+                 rank=None,
+                 natural_basis=None):
+        """
+        EXAMPLES:
+
+        By definition, Jordan multiplication commutes::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x*y == y*x
+            True
+
+        """
         self._rank = rank
+        self._natural_basis = natural_basis
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
                      mult_table,
@@ -67,6 +84,49 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         fmt = "Euclidean Jordan algebra of degree {} over {}"
         return fmt.format(self.degree(), self.base_ring())
 
+
+    def natural_basis(self):
+        """
+        Return a more-natural representation of this algebra's basis.
+
+        Every finite-dimensional Euclidean Jordan Algebra is a direct
+        sum of five simple algebras, four of which comprise Hermitian
+        matrices. This method returns the original "natural" basis
+        for our underlying vector space. (Typically, the natural basis
+        is used to construct the multiplication table in the first place.)
+
+        Note that this will always return a matrix. The standard basis
+        in `R^n` will be returned as `n`-by-`1` column matrices.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricSimpleEJA(2)
+            sage: J.basis()
+            Family (e0, e1, e2)
+            sage: J.natural_basis()
+            (
+            [1 0]  [0 1]  [0 0]
+            [0 0], [1 0], [0 1]
+            )
+
+        ::
+
+            sage: J = JordanSpinSimpleEJA(2)
+            sage: J.basis()
+            Family (e0, e1)
+            sage: J.natural_basis()
+            (
+            [1]  [0]
+            [0], [1]
+            )
+
+        """
+        if self._natural_basis is None:
+            return tuple( b.vector().column() for b in self.basis() )
+        else:
+            return self._natural_basis
+
+
     def rank(self):
         """
         Return the rank of this EJA.
@@ -95,11 +155,32 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 instead of column vectors! We, on the other hand, assume column
                 vectors everywhere.
 
-            EXAMPLES:
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_matrix()*x.vector() == (x^2).vector()
+                True
+
+            A few examples of power-associativity::
 
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
-                sage: x.matrix()*x.vector() == (x**2).vector()
+                sage: x*(x*x)*(x*x) == x^5
+                True
+                sage: (x*x)*(x*x*x) == x^5
+                True
+
+            We also know that powers operator-commute (Koecher, Chapter
+            III, Corollary 1)::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: m = ZZ.random_element(0,10)
+                sage: n = ZZ.random_element(0,10)
+                sage: Lxm = (x^m).operator_matrix()
+                sage: Lxn = (x^n).operator_matrix()
+                sage: Lxm*Lxn == Lxn*Lxm
                 True
 
             """
@@ -109,7 +190,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             elif n == 1:
                 return self
             else:
-                return A.element_class(A, (self.matrix()**(n-1))*self.vector())
+                return A( (self.operator_matrix()**(n-1))*self.vector() )
 
 
         def characteristic_polynomial(self):
@@ -127,6 +208,43 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise NotImplementedError('irregular element')
 
 
+        def operator_commutes_with(self, other):
+            """
+            Return whether or not this element operator-commutes
+            with ``other``.
+
+            EXAMPLES:
+
+            The definition of a Jordan algebra says that any element
+            operator-commutes with its square::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_commutes_with(x^2)
+                True
+
+            TESTS:
+
+            Test Lemma 1 from Chapter III of Koecher::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: v = J.random_element()
+                sage: lhs = u.operator_commutes_with(u*v)
+                sage: rhs = v.operator_commutes_with(u^2)
+                sage: lhs == rhs
+                True
+
+            """
+            if not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            A = self.operator_matrix()
+            B = other.operator_matrix()
+            return (A*B == B*A)
+
+
         def det(self):
             """
             Return my determinant, the product of my eigenvalues.
@@ -153,6 +271,96 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise ValueError('charpoly had no coefficients')
 
 
+        def inverse(self):
+            """
+            Return the Jordan-multiplicative inverse of this element.
+
+            We can't use the superclass method because it relies on the
+            algebra being associative.
+
+            EXAMPLES:
+
+            The inverse in the spin factor algebra is given in Alizadeh's
+            Example 11.11::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinSimpleEJA(n)
+                sage: x = J.random_element()
+                sage: while x.is_zero():
+                ....:     x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
+                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+                sage: x_inverse = coeff*inv_vec
+                sage: x.inverse() == J(x_inverse)
+                True
+
+            TESTS:
+
+            The identity element is its own inverse::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().inverse() == J.one()
+                True
+
+            If an element has an inverse, it acts like one. TODO: this
+            can be a lot less ugly once ``is_invertible`` doesn't crash
+            on irregular elements::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: try:
+                ....:     x.inverse()*x == J.one()
+                ....: except:
+                ....:     True
+                True
+
+            """
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+                return elt.inverse()
+
+            # TODO: we can do better once the call to is_invertible()
+            # doesn't crash on irregular elements.
+            #if not self.is_invertible():
+            #    raise ArgumentError('element is not invertible')
+
+            # We do this a little different than the usual recursive
+            # call to a finite-dimensional algebra element, because we
+            # wind up with an inverse that lives in the subalgebra and
+            # we need information about the parent to convert it back.
+            V = self.span_of_powers()
+            assoc_subalg = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # This will be in the subalgebra's coordinates...
+            fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
+            subalg_inverse = fda_elt.inverse()
+
+            # So we have to convert back...
+            basis = [ self.parent(v) for v in V.basis() ]
+            pairs = zip(subalg_inverse.vector(), basis)
+            return self.parent().linear_combination(pairs)
+
+
+        def is_invertible(self):
+            """
+            Return whether or not this element is invertible.
+
+            We can't use the superclass method because it relies on
+            the algebra being associative.
+            """
+            return not self.det().is_zero()
+
+
         def is_nilpotent(self):
             """
             Return whether or not some power of this element is zero.
@@ -243,7 +451,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             aren't multiples of the identity are regular::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
@@ -253,19 +461,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return self.span_of_powers().dimension()
 
 
-        def matrix(self):
-            """
-            Return the matrix that represents left- (or right-)
-            multiplication by this element in the parent algebra.
-
-            We have to override this because the superclass method
-            returns a matrix that acts on row vectors (that is, on
-            the right).
-            """
-            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            return fda_elt.matrix().transpose()
-
-
         def minimal_polynomial(self):
             """
             EXAMPLES::
@@ -288,7 +483,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             identity::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
+                sage: n = ZZ.random_element(2,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: y = J.random_element()
                 sage: while y == y.coefficient(0)*J.one():
@@ -323,7 +518,103 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return elt.minimal_polynomial()
 
 
-        def quadratic_representation(self):
+        def natural_representation(self):
+            """
+            Return a more-natural representation of this element.
+
+            Every finite-dimensional Euclidean Jordan Algebra is a
+            direct sum of five simple algebras, four of which comprise
+            Hermitian matrices. This method returns the original
+            "natural" representation of this element as a Hermitian
+            matrix, if it has one. If not, you get the usual representation.
+
+            EXAMPLES::
+
+                sage: J = ComplexHermitianSimpleEJA(3)
+                sage: J.one()
+                e0 + e5 + e8
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0]
+                [0 1 0 0 0 0]
+                [0 0 1 0 0 0]
+                [0 0 0 1 0 0]
+                [0 0 0 0 1 0]
+                [0 0 0 0 0 1]
+
+            """
+            B = self.parent().natural_basis()
+            W = B[0].matrix_space()
+            return W.linear_combination(zip(self.vector(), B))
+
+
+        def operator_matrix(self):
+            """
+            Return the matrix that represents left- (or right-)
+            multiplication by this element in the parent algebra.
+
+            We have to override this because the superclass method
+            returns a matrix that acts on row vectors (that is, on
+            the right).
+
+            EXAMPLES:
+
+            Test the first polarization identity from my notes, Koecher Chapter
+            III, or from Baes (2.3)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lxx = (x*x).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
+                True
+
+            Test the second polarization identity from my notes or from
+            Baes (2.4)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: Lxz = (x*z).operator_matrix()
+                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
+                True
+
+            Test the third polarization identity from my notes or from
+            Baes (2.5)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lu = u.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Luy = (u*y).operator_matrix()
+                sage: Luz = (u*z).operator_matrix()
+                sage: Luyz = (u*(y*z)).operator_matrix()
+                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+                sage: bool(lhs == rhs)
+                True
+
+            """
+            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            return fda_elt.matrix().transpose()
+
+
+        def quadratic_representation(self, other=None):
             """
             Return the quadratic representation of this element.
 
@@ -332,7 +623,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The explicit form in the spin factor algebra is given by
             Alizadeh's Example 11.12::
 
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x_vec = x.vector()
@@ -348,8 +640,55 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: Q == x.quadratic_representation()
                 True
 
+            Test all of the properties from Theorem 11.2 in Alizadeh::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+
+            Property 1:
+
+                sage: actual = x.quadratic_representation(y)
+                sage: expected = ( (x+y).quadratic_representation()
+                ....:              -x.quadratic_representation()
+                ....:              -y.quadratic_representation() ) / 2
+                sage: actual == expected
+                True
+
+            Property 2:
+
+                sage: alpha = QQ.random_element()
+                sage: actual = (alpha*x).quadratic_representation()
+                sage: expected = (alpha^2)*x.quadratic_representation()
+                sage: actual == expected
+                True
+
+            Property 5:
+
+                sage: Qy = y.quadratic_representation()
+                sage: actual = J(Qy*x.vector()).quadratic_representation()
+                sage: expected = Qy*x.quadratic_representation()*Qy
+                sage: actual == expected
+                True
+
+            Property 6:
+
+                sage: k = ZZ.random_element(1,10)
+                sage: actual = (x^k).quadratic_representation()
+                sage: expected = (x.quadratic_representation())^k
+                sage: actual == expected
+                True
+
             """
-            return 2*(self.matrix()**2) - (self**2).matrix()
+            if other is None:
+                other=self
+            elif not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            L = self.operator_matrix()
+            M = other.operator_matrix()
+            return ( L*M + M*L - (self*other).operator_matrix() )
 
 
         def span_of_powers(self):
@@ -382,7 +721,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
                 sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.matrix()*u.vector() == (u**2).vector()
+                sage: u.operator_matrix()*u.vector() == (u**2).vector()
                 True
 
             """
@@ -454,7 +793,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             s = 0
             minimal_dim = V.dimension()
             for i in xrange(1, V.dimension()):
-                this_dim = (u**i).matrix().image().dimension()
+                this_dim = (u**i).operator_matrix().image().dimension()
                 if this_dim < minimal_dim:
                     minimal_dim = this_dim
                     s = i
@@ -471,7 +810,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             # Beware, solve_right() means that we're using COLUMN vectors.
             # Our FiniteDimensionalAlgebraElement superclass uses rows.
             u_next = u**(s+1)
-            A = u_next.matrix()
+            A = u_next.operator_matrix()
             c_coordinates = A.solve_right(u_next.vector())
 
             # Now c_coordinates is the idempotent we want, but it's in
@@ -576,7 +915,7 @@ def random_eja():
         Euclidean Jordan algebra of degree...
 
     """
-    n = ZZ.random_element(1,5).abs()
+    n = ZZ.random_element(1,5)
     constructor = choice([eja_rn,
                           JordanSpinSimpleEJA,
                           RealSymmetricSimpleEJA,
@@ -601,7 +940,44 @@ def _real_symmetric_basis(n, field=QQ):
                 # Beware, orthogonal but not normalized!
                 Sij = Eij + Eij.transpose()
             S.append(Sij)
-    return S
+    return tuple(S)
+
+
+def _complex_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of complex Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
+        True
+
+    """
+    F = QuadraticField(-1, 'I')
+    I = F.gen()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(field, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_complex_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second one
+                # has a minus because it's conjugated.
+                Sij_real = _embed_complex_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_imag)
+    return tuple(S)
 
 
 def _multiplication_table_from_matrix_basis(basis):
@@ -611,7 +987,10 @@ def _multiplication_table_from_matrix_basis(basis):
     multiplication on the right is matrix multiplication. Given a basis
     for the underlying matrix space, this function returns a
     multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices.
+    elements) for an algebra of those matrices. A reordered copy
+    of the basis is also returned to work around the fact that
+    the ``span()`` in this function will change the order of the basis
+    from what we think it is, to... something else.
     """
     # In S^2, for example, we nominally have four coordinates even
     # though the space is of dimension three only. The vector space V
@@ -633,7 +1012,7 @@ def _multiplication_table_from_matrix_basis(basis):
     # Taking the span above reorders our basis (thanks, jerk!) so we
     # need to put our "matrix basis" in the same order as the
     # (reordered) vector basis.
-    S = [ vec2mat(b) for b in W.basis() ]
+    S = tuple( vec2mat(b) for b in W.basis() )
 
     Qs = []
     for s in S:
@@ -651,7 +1030,7 @@ def _multiplication_table_from_matrix_basis(basis):
         Q = matrix(field, W.dimension(), Q_rows)
         Qs.append(Q)
 
-    return Qs
+    return (Qs, S)
 
 
 def _embed_complex_matrix(M):
@@ -745,30 +1124,52 @@ def RealSymmetricSimpleEJA(n, field=QQ):
         e0 + e2
         sage: e2*e2
         e2
+
+    TESTS:
+
+    The degree of this algebra is `(n^2 + n) / 2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricSimpleEJA(n)
+        sage: J.degree() == (n^2 + n)/2
+        True
+
     """
     S = _real_symmetric_basis(n, field=field)
-    Qs = _multiplication_table_from_matrix_basis(S)
+    (Qs, T) = _multiplication_table_from_matrix_basis(S)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,
+                                                   Qs,
+                                                   rank=n,
+                                                   natural_basis=T)
 
 
 def ComplexHermitianSimpleEJA(n, field=QQ):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
-    and the real-part-of-trace inner product. It has dimension `n^2 over
+    and the real-part-of-trace inner product. It has dimension `n^2` over
     the reals.
+
+    TESTS:
+
+    The degree of this algebra is `n^2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianSimpleEJA(n)
+        sage: J.degree() == n^2
+        True
+
     """
-    F = QuadraticField(-1, 'i')
-    i = F.gen()
-    S = _real_symmetric_basis(n, field=F)
-    T = []
-    for s in S:
-        T.append(s)
-        T.append(i*s)
-    embed_T = [ _embed_complex_matrix(t) for t in T ]
-    Qs = _multiplication_table_from_matrix_basis(embed_T)
-    return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
+    S = _complex_hermitian_basis(n)
+    (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,
+                                                   Qs,
+                                                   rank=n,
+                                                   natural_basis=T)
+
 
 def QuaternionHermitianSimpleEJA(n):
     """