]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: add is_regular() method on elements.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 1f037688eee6f0f2931ef5ba311de0a96da6cea0..60a7ba1ede07bac242eb9aef6bcf9b722340c595 100644 (file)
@@ -85,6 +85,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         also the left multiplication matrix and must be symmetric::
 
             sage: set_random_seed()
+            sage: n = ZZ.random_element(1,10).abs()
+            sage: J = eja_rn(5)
+            sage: J.random_element().matrix().is_symmetric()
+            True
             sage: J = eja_ln(5)
             sage: J.random_element().matrix().is_symmetric()
             True
@@ -97,6 +101,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             Jordan algebras are always power-associative; see for
             example Faraut and Koranyi, Proposition II.1.2 (ii).
+
+            .. WARNING:
+
+                We have to override this because our superclass uses row vectors
+                instead of column vectors! We, on the other hand, assume column
+                vectors everywhere.
+
+            EXAMPLES:
+
+                sage: set_random_seed()
+                sage: J = eja_ln(5)
+                sage: x = J.random_element()
+                sage: x.matrix()*x.vector() == (x**2).vector()
+                True
+
             """
             A = self.parent()
             if n == 0:
@@ -104,9 +123,33 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             elif n == 1:
                 return self
             else:
-                return A.element_class(A, self.vector()*(self.matrix()**(n-1)))
+                return A.element_class(A, (self.matrix()**(n-1))*self.vector())
 
 
+        def is_regular(self):
+            """
+            Return whether or not this is a regular element.
+
+            EXAMPLES:
+
+            The identity element always has degree one, but any element
+            linearly-independent from it is regular::
+
+                sage: J = eja_ln(5)
+                sage: J.one().is_regular()
+                False
+                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+                sage: for x in J.gens():
+                ....:     (J.one() + x).is_regular()
+                False
+                True
+                True
+                True
+                True
+
+            """
+            return self.degree() == self.parent().rank()
+
         def span_of_powers(self):
             """
             Return the vector space spanned by successive powers of
@@ -149,9 +192,46 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return self.span_of_powers().dimension()
 
 
+        def matrix(self):
+            """
+            Return the matrix that represents left- (or right-)
+            multiplication by this element in the parent algebra.
+
+            We have to override this because the superclass method
+            returns a matrix that acts on row vectors (that is, on
+            the right).
+            """
+            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            return fda_elt.matrix().transpose()
+
+
         def subalgebra_generated_by(self):
             """
-            Return the subalgebra of the parent EJA generated by this element.
+            Return the associative subalgebra of the parent EJA generated
+            by this element.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10).abs()
+                sage: J = eja_rn(n)
+                sage: x = J.random_element()
+                sage: x.subalgebra_generated_by().is_associative()
+                True
+                sage: J = eja_ln(n)
+                sage: x = J.random_element()
+                sage: x.subalgebra_generated_by().is_associative()
+                True
+
+            Squaring in the subalgebra should be the same thing as
+            squaring in the superalgebra::
+
+                sage: J = eja_ln(5)
+                sage: x = J.random_element()
+                sage: u = x.subalgebra_generated_by().random_element()
+                sage: u.matrix()*u.vector() == (u**2).vector()
+                True
+
             """
             # First get the subspace spanned by the powers of myself...
             V = self.span_of_powers()
@@ -168,6 +248,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 # b1 is what we get if we apply that matrix to b1. The
                 # second row of the right multiplication matrix by b1
                 # is what we get when we apply that matrix to b2...
+                #
+                # IMPORTANT: this assumes that all vectors are COLUMN
+                # vectors, unlike our superclass (which uses row vectors).
                 for b_left in V.basis():
                     eja_b_left = self.parent()(b_left)
                     # Multiply in the original EJA, but then get the
@@ -178,7 +261,11 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 b_right_matrix = matrix(F, b_right_rows)
                 mats.append(b_right_matrix)
 
-            return FiniteDimensionalEuclideanJordanAlgebra(F, mats)
+            # It's an algebra of polynomials in one element, and EJAs
+            # are power-associative.
+            #
+            # TODO: choose generator names intelligently.
+            return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
 
 
         def minimal_polynomial(self):
@@ -221,13 +308,143 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 True
 
             """
+            # The element we're going to call "minimal_polynomial()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.minimal_polynomial()
+
+
+        def is_nilpotent(self):
+            """
+            Return whether or not some power of this element is zero.
+
+            The superclass method won't work unless we're in an
+            associative algebra, and we aren't. However, we generate
+            an assocoative subalgebra and we're nilpotent there if and
+            only if we're nilpotent here (probably).
+
+            TESTS:
+
+            The identity element is never nilpotent::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(2,10).abs()
+                sage: J = eja_rn(n)
+                sage: J.one().is_nilpotent()
+                False
+                sage: J = eja_ln(n)
+                sage: J.one().is_nilpotent()
+                False
+
+            The additive identity is always nilpotent::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(2,10).abs()
+                sage: J = eja_rn(n)
+                sage: J.zero().is_nilpotent()
+                True
+                sage: J = eja_ln(n)
+                sage: J.zero().is_nilpotent()
+                True
+
+            """
+            # The element we're going to call "is_nilpotent()" on.
+            # Either myself, interpreted as an element of a finite-
+            # dimensional algebra, or an element of an associative
+            # subalgebra.
+            elt = None
+
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            else:
+                V = self.span_of_powers()
+                assoc_subalg = self.subalgebra_generated_by()
+                # Mis-design warning: the basis used for span_of_powers()
+                # and subalgebra_generated_by() must be the same, and in
+                # the same order!
+                elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # Recursive call, but should work since elt lives in an
+            # associative algebra.
+            return elt.is_nilpotent()
+
+
+        def subalgebra_idempotent(self):
+            """
+            Find an idempotent in the associative subalgebra I generate
+            using Proposition 2.3.5 in Baes.
+
+            TESTS::
+
+                sage: set_random_seed()
+                sage: J = eja_rn(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+                sage: J = eja_ln(5)
+                sage: c = J.random_element().subalgebra_idempotent()
+                sage: c^2 == c
+                True
+
+            """
+            if self.is_nilpotent():
+                raise ValueError("this only works with non-nilpotent elements!")
+
             V = self.span_of_powers()
-            assoc_subalg = self.subalgebra_generated_by()
+            J = self.subalgebra_generated_by()
             # Mis-design warning: the basis used for span_of_powers()
             # and subalgebra_generated_by() must be the same, and in
             # the same order!
-            subalg_self = assoc_subalg(V.coordinates(self.vector()))
-            return subalg_self.matrix().minimal_polynomial()
+            u = J(V.coordinates(self.vector()))
+
+            # The image of the matrix of left-u^m-multiplication
+            # will be minimal for some natural number s...
+            s = 0
+            minimal_dim = V.dimension()
+            for i in xrange(1, V.dimension()):
+                this_dim = (u**i).matrix().image().dimension()
+                if this_dim < minimal_dim:
+                    minimal_dim = this_dim
+                    s = i
+
+            # Now minimal_matrix should correspond to the smallest
+            # non-zero subspace in Baes's (or really, Koecher's)
+            # proposition.
+            #
+            # However, we need to restrict the matrix to work on the
+            # subspace... or do we? Can't we just solve, knowing that
+            # A(c) = u^(s+1) should have a solution in the big space,
+            # too?
+            #
+            # Beware, solve_right() means that we're using COLUMN vectors.
+            # Our FiniteDimensionalAlgebraElement superclass uses rows.
+            u_next = u**(s+1)
+            A = u_next.matrix()
+            c_coordinates = A.solve_right(u_next.vector())
+
+            # Now c_coordinates is the idempotent we want, but it's in
+            # the coordinate system of the subalgebra.
+            #
+            # We need the basis for J, but as elements of the parent algebra.
+            #
+            basis = [self.parent(v) for v in V.basis()]
+            return self.parent().linear_combination(zip(c_coordinates, basis))
+
 
 
         def characteristic_polynomial(self):