]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: add operator_commutes_with() for elements.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index d6235d33ee2edd77f24d1b304e8d4d80b4342d9f..4713ff0859876b5832e6e5e9551f632444c6a138 100644 (file)
@@ -52,6 +52,19 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                  assume_associative=False,
                  category=None,
                  rank=None):
+        """
+        EXAMPLES:
+
+        By definition, Jordan multiplication commutes::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x*y == y*x
+            True
+
+        """
         self._rank = rank
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
@@ -95,11 +108,32 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 instead of column vectors! We, on the other hand, assume column
                 vectors everywhere.
 
-            EXAMPLES:
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.matrix()*x.vector() == (x^2).vector()
+                True
+
+            A few examples of power-associativity::
 
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
-                sage: x.matrix()*x.vector() == (x**2).vector()
+                sage: x*(x*x)*(x*x) == x^5
+                True
+                sage: (x*x)*(x*x*x) == x^5
+                True
+
+            We also know that powers operator-commute (Koecher, Chapter
+            III, Corollary 1)::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: m = ZZ.random_element(0,10)
+                sage: n = ZZ.random_element(0,10)
+                sage: Lxm = (x^m).matrix()
+                sage: Lxn = (x^n).matrix()
+                sage: Lxm*Lxn == Lxn*Lxm
                 True
 
             """
@@ -127,6 +161,43 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise NotImplementedError('irregular element')
 
 
+        def operator_commutes_with(self, other):
+            """
+            Return whether or not this element operator-commutes
+            with ``other``.
+
+            EXAMPLES:
+
+            The definition of a Jordan algebra says that any element
+            operator-commutes with its square::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_commutes_with(x^2)
+                True
+
+            TESTS:
+
+            Test Lemma 1 from Chapter III of Koecher::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: v = J.random_element()
+                sage: lhs = u.operator_commutes_with(u*v)
+                sage: rhs = v.operator_commutes_with(u^2)
+                sage: lhs == rhs
+                True
+
+            """
+            if not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            A = self.matrix()
+            B = other.matrix()
+            return (A*B == B*A)
+
+
         def det(self):
             """
             Return my determinant, the product of my eigenvalues.
@@ -153,6 +224,96 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise ValueError('charpoly had no coefficients')
 
 
+        def inverse(self):
+            """
+            Return the Jordan-multiplicative inverse of this element.
+
+            We can't use the superclass method because it relies on the
+            algebra being associative.
+
+            EXAMPLES:
+
+            The inverse in the spin factor algebra is given in Alizadeh's
+            Example 11.11::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinSimpleEJA(n)
+                sage: x = J.random_element()
+                sage: while x.is_zero():
+                ....:     x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: coeff = 1/(x0^2 - x_bar.inner_product(x_bar))
+                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+                sage: x_inverse = coeff*inv_vec
+                sage: x.inverse() == J(x_inverse)
+                True
+
+            TESTS:
+
+            The identity element is its own inverse::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().inverse() == J.one()
+                True
+
+            If an element has an inverse, it acts like one. TODO: this
+            can be a lot less ugly once ``is_invertible`` doesn't crash
+            on irregular elements::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: try:
+                ....:     x.inverse()*x == J.one()
+                ....: except:
+                ....:     True
+                True
+
+            """
+            if self.parent().is_associative():
+                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+                return elt.inverse()
+
+            # TODO: we can do better once the call to is_invertible()
+            # doesn't crash on irregular elements.
+            #if not self.is_invertible():
+            #    raise ArgumentError('element is not invertible')
+
+            # We do this a little different than the usual recursive
+            # call to a finite-dimensional algebra element, because we
+            # wind up with an inverse that lives in the subalgebra and
+            # we need information about the parent to convert it back.
+            V = self.span_of_powers()
+            assoc_subalg = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # This will be in the subalgebra's coordinates...
+            fda_elt = FiniteDimensionalAlgebraElement(assoc_subalg, elt)
+            subalg_inverse = fda_elt.inverse()
+
+            # So we have to convert back...
+            basis = [ self.parent(v) for v in V.basis() ]
+            pairs = zip(subalg_inverse.vector(), basis)
+            return self.parent().linear_combination(pairs)
+
+
+        def is_invertible(self):
+            """
+            Return whether or not this element is invertible.
+
+            We can't use the superclass method because it relies on
+            the algebra being associative.
+            """
+            return not self.det().is_zero()
+
+
         def is_nilpotent(self):
             """
             Return whether or not some power of this element is zero.
@@ -243,7 +404,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             aren't multiples of the identity are regular::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
@@ -261,6 +422,60 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             We have to override this because the superclass method
             returns a matrix that acts on row vectors (that is, on
             the right).
+
+            EXAMPLES:
+
+            Test the first polarization identity from my notes, Koecher Chapter
+            III, or from Baes (2.3)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: Lx = x.matrix()
+                sage: Ly = y.matrix()
+                sage: Lxx = (x*x).matrix()
+                sage: Lxy = (x*y).matrix()
+                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
+                True
+
+            Test the second polarization identity from my notes or from
+            Baes (2.4)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lx = x.matrix()
+                sage: Ly = y.matrix()
+                sage: Lz = z.matrix()
+                sage: Lzy = (z*y).matrix()
+                sage: Lxy = (x*y).matrix()
+                sage: Lxz = (x*z).matrix()
+                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
+                True
+
+            Test the third polarization identity from my notes or from
+            Baes (2.5)::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lu = u.matrix()
+                sage: Ly = y.matrix()
+                sage: Lz = z.matrix()
+                sage: Lzy = (z*y).matrix()
+                sage: Luy = (u*y).matrix()
+                sage: Luz = (u*z).matrix()
+                sage: Luyz = (u*(y*z)).matrix()
+                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+                sage: bool(lhs == rhs)
+                True
+
             """
             fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
             return fda_elt.matrix().transpose()
@@ -288,7 +503,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             identity::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
+                sage: n = ZZ.random_element(2,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: y = J.random_element()
                 sage: while y == y.coefficient(0)*J.one():
@@ -323,7 +538,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             return elt.minimal_polynomial()
 
 
-        def quadratic_representation(self):
+        def quadratic_representation(self, other=None):
             """
             Return the quadratic representation of this element.
 
@@ -332,7 +547,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The explicit form in the spin factor algebra is given by
             Alizadeh's Example 11.12::
 
-                sage: n = ZZ.random_element(1,10).abs()
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
                 sage: J = JordanSpinSimpleEJA(n)
                 sage: x = J.random_element()
                 sage: x_vec = x.vector()
@@ -348,8 +564,55 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: Q == x.quadratic_representation()
                 True
 
+            Test all of the properties from Theorem 11.2 in Alizadeh::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+
+            Property 1:
+
+                sage: actual = x.quadratic_representation(y)
+                sage: expected = ( (x+y).quadratic_representation()
+                ....:              -x.quadratic_representation()
+                ....:              -y.quadratic_representation() ) / 2
+                sage: actual == expected
+                True
+
+            Property 2:
+
+                sage: alpha = QQ.random_element()
+                sage: actual = (alpha*x).quadratic_representation()
+                sage: expected = (alpha^2)*x.quadratic_representation()
+                sage: actual == expected
+                True
+
+            Property 5:
+
+                sage: Qy = y.quadratic_representation()
+                sage: actual = J(Qy*x.vector()).quadratic_representation()
+                sage: expected = Qy*x.quadratic_representation()*Qy
+                sage: actual == expected
+                True
+
+            Property 6:
+
+                sage: k = ZZ.random_element(1,10)
+                sage: actual = (x^k).quadratic_representation()
+                sage: expected = (x.quadratic_representation())^k
+                sage: actual == expected
+                True
+
             """
-            return 2*(self.matrix()**2) - (self**2).matrix()
+            if other is None:
+                other=self
+            elif not other in self.parent():
+                raise ArgumentError("'other' must live in the same algebra")
+
+            return ( self.matrix()*other.matrix()
+                       + other.matrix()*self.matrix()
+                       - (self*other).matrix() )
 
 
         def span_of_powers(self):
@@ -576,7 +839,7 @@ def random_eja():
         Euclidean Jordan algebra of degree...
 
     """
-    n = ZZ.random_element(1,5).abs()
+    n = ZZ.random_element(1,5)
     constructor = choice([eja_rn,
                           JordanSpinSimpleEJA,
                           RealSymmetricSimpleEJA,
@@ -611,7 +874,7 @@ def _complex_hermitian_basis(n, field=QQ):
     TESTS::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
         True
 
@@ -788,7 +1051,7 @@ def RealSymmetricSimpleEJA(n, field=QQ):
     The degree of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: J = RealSymmetricSimpleEJA(n)
         sage: J.degree() == (n^2 + n)/2
         True
@@ -812,7 +1075,7 @@ def ComplexHermitianSimpleEJA(n, field=QQ):
     The degree of this algebra is `n^2`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: J = ComplexHermitianSimpleEJA(n)
         sage: J.degree() == n^2
         True