]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: turn the other simple EJA constructors into classes.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 7c7c2d6ba3f0d54ab34c89d37e47e6bbd5844e40..32481621975ab3aabc217eae5ef72d9abf191980 100644 (file)
@@ -50,7 +50,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                                  inner_product=inner_product)
 
 
-    def __init__(self, field,
+    def __init__(self,
+                 field,
                  mult_table,
                  names='e',
                  assume_associative=False,
@@ -132,7 +133,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         EXAMPLES::
 
-            sage: J = RealSymmetricSimpleEJA(2)
+            sage: J = RealSymmetricEJA(2)
             sage: J.basis()
             Family (e0, e1, e2)
             sage: J.natural_basis()
@@ -143,7 +144,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         ::
 
-            sage: J = JordanSpinSimpleEJA(2)
+            sage: J = JordanSpinEJA(2)
             sage: J.basis()
             Family (e0, e1)
             sage: J.natural_basis()
@@ -180,14 +181,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             The identity in `S^n` is converted to the identity in the EJA::
 
-                sage: J = RealSymmetricSimpleEJA(3)
+                sage: J = RealSymmetricEJA(3)
                 sage: I = identity_matrix(QQ,3)
                 sage: J(I) == J.one()
                 True
 
             This skew-symmetric matrix can't be represented in the EJA::
 
-                sage: J = RealSymmetricSimpleEJA(3)
+                sage: J = RealSymmetricEJA(3)
                 sage: A = matrix(QQ,3, lambda i,j: i-j)
                 sage: J(A)
                 Traceback (most recent call last):
@@ -295,7 +296,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             inner product on `R^n` (this example only works because the
             basis for the Jordan algebra is the standard basis in `R^n`)::
 
-                sage: J = JordanSpinSimpleEJA(3)
+                sage: J = JordanSpinEJA(3)
                 sage: x = vector(QQ,[1,2,3])
                 sage: y = vector(QQ,[4,5,6])
                 sage: x.inner_product(y)
@@ -308,7 +309,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             so the inner product of the identity matrix with itself
             should be the `n`::
 
-                sage: J = RealSymmetricSimpleEJA(3)
+                sage: J = RealSymmetricEJA(3)
                 sage: J.one().inner_product(J.one())
                 3
 
@@ -317,7 +318,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             part because the product of Hermitian matrices may not be
             Hermitian::
 
-                sage: J = ComplexHermitianSimpleEJA(3)
+                sage: J = ComplexHermitianEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Ditto for the quaternions::
+
+                sage: J = QuaternionHermitianEJA(3)
                 sage: J.one().inner_product(J.one())
                 3
 
@@ -384,12 +391,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinSimpleEJA(2)
+                sage: J = JordanSpinEJA(2)
                 sage: e0,e1 = J.gens()
                 sage: x = e0 + e1
                 sage: x.det()
                 0
-                sage: J = JordanSpinSimpleEJA(3)
+                sage: J = JordanSpinEJA(3)
                 sage: e0,e1,e2 = J.gens()
                 sage: x = e0 + e1 + e2
                 sage: x.det()
@@ -418,7 +425,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: while x.is_zero():
                 ....:     x = J.random_element()
@@ -548,7 +555,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The identity element always has degree one, but any element
             linearly-independent from it is regular::
 
-                sage: J = JordanSpinSimpleEJA(5)
+                sage: J = JordanSpinEJA(5)
                 sage: J.one().is_regular()
                 False
                 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
@@ -573,7 +580,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinSimpleEJA(4)
+                sage: J = JordanSpinEJA(4)
                 sage: J.one().degree()
                 1
                 sage: e0,e1,e2,e3 = J.gens()
@@ -585,7 +592,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
                 True
@@ -617,7 +624,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: J = JordanSpinEJA(n)
                 sage: y = J.random_element()
                 sage: while y == y.coefficient(0)*J.one():
                 ....:     y = J.random_element()
@@ -663,7 +670,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = ComplexHermitianSimpleEJA(3)
+                sage: J = ComplexHermitianEJA(3)
                 sage: J.one()
                 e0 + e5 + e8
                 sage: J.one().natural_representation()
@@ -674,6 +681,25 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 [0 0 0 0 1 0]
                 [0 0 0 0 0 1]
 
+            ::
+
+                sage: J = QuaternionHermitianEJA(3)
+                sage: J.one()
+                e0 + e9 + e14
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0 0 0 0 0 0 0]
+                [0 1 0 0 0 0 0 0 0 0 0 0]
+                [0 0 1 0 0 0 0 0 0 0 0 0]
+                [0 0 0 1 0 0 0 0 0 0 0 0]
+                [0 0 0 0 1 0 0 0 0 0 0 0]
+                [0 0 0 0 0 1 0 0 0 0 0 0]
+                [0 0 0 0 0 0 1 0 0 0 0 0]
+                [0 0 0 0 0 0 0 1 0 0 0 0]
+                [0 0 0 0 0 0 0 0 1 0 0 0]
+                [0 0 0 0 0 0 0 0 0 1 0 0]
+                [0 0 0 0 0 0 0 0 0 0 1 0]
+                [0 0 0 0 0 0 0 0 0 0 0 1]
+
             """
             B = self.parent().natural_basis()
             W = B[0].matrix_space()
@@ -758,7 +784,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: x_vec = x.vector()
                 sage: x0 = x_vec[0]
@@ -905,7 +931,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
-                sage: J = JordanSpinSimpleEJA(5)
+                sage: J = JordanSpinEJA(5)
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
@@ -961,7 +987,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinSimpleEJA(3)
+                sage: J = JordanSpinEJA(3)
                 sage: e0,e1,e2 = J.gens()
                 sage: x = e0 + e1 + e2
                 sage: x.trace()
@@ -1042,6 +1068,12 @@ def random_eja():
       * The ``n``-by-``n`` rational symmetric matrices with the symmetric
         product.
 
+      * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
+        in the space of ``2n``-by-``2n`` real symmetric matrices.
+
+      * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
+        in the space of ``4n``-by-``4n`` real symmetric matrices.
+
     Later this might be extended to return Cartesian products of the
     EJAs above.
 
@@ -1053,9 +1085,10 @@ def random_eja():
     """
     n = ZZ.random_element(1,5)
     constructor = choice([eja_rn,
-                          JordanSpinSimpleEJA,
-                          RealSymmetricSimpleEJA,
-                          ComplexHermitianSimpleEJA])
+                          JordanSpinEJA,
+                          RealSymmetricEJA,
+                          ComplexHermitianEJA,
+                          QuaternionHermitianEJA])
     return constructor(n, field=QQ)
 
 
@@ -1116,6 +1149,48 @@ def _complex_hermitian_basis(n, field=QQ):
     return tuple(S)
 
 
+def _quaternion_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of quaternion Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
+        True
+
+    """
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    I,J,K = Q.gens()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_quaternion_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second,
+                # third, and fourth ones have a minus because they're
+                # conjugated.
+                Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_I)
+                Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
+                S.append(Sij_J)
+                Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
+                S.append(Sij_K)
+    return tuple(S)
+
+
 def _mat2vec(m):
         return vector(m.base_ring(), m.list())
 
@@ -1190,6 +1265,20 @@ def _embed_complex_matrix(M):
         [ 0 -1| 6  0]
         [ 1  0| 0  6]
 
+    TESTS:
+
+    Embedding is a homomorphism (isomorphism, in fact)::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(5)
+        sage: F = QuadraticField(-1, 'i')
+        sage: X = random_matrix(F, n)
+        sage: Y = random_matrix(F, n)
+        sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
+        sage: expected = _embed_complex_matrix(X*Y)
+        sage: actual == expected
+        True
+
     """
     n = M.nrows()
     if M.ncols() != n:
@@ -1219,7 +1308,9 @@ def _unembed_complex_matrix(M):
         [  2*i + 1   4*i + 3]
         [ 10*i + 9 12*i + 11]
 
-    TESTS::
+    TESTS:
+
+    Unembedding is the inverse of embedding::
 
         sage: set_random_seed()
         sage: F = QuadraticField(-1, 'i')
@@ -1273,6 +1364,18 @@ def _embed_quaternion_matrix(M):
         [-3  4  1 -2]
         [-4 -3  2  1]
 
+    Embedding is a homomorphism (isomorphism, in fact)::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(5)
+        sage: Q = QuaternionAlgebra(QQ,-1,-1)
+        sage: X = random_matrix(Q, n)
+        sage: Y = random_matrix(Q, n)
+        sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
+        sage: expected = _embed_quaternion_matrix(X*Y)
+        sage: actual == expected
+        True
+
     """
     quaternions = M.base_ring()
     n = M.nrows()
@@ -1311,7 +1414,9 @@ def _unembed_quaternion_matrix(M):
         sage: _unembed_quaternion_matrix(M)
         [1 + 2*i + 3*j + 4*k]
 
-    TESTS::
+    TESTS:
+
+    Unembedding is the inverse of embedding::
 
         sage: set_random_seed()
         sage: Q = QuaternionAlgebra(QQ, -1, -1)
@@ -1360,7 +1465,7 @@ def _matrix_ip(X,Y):
     return (X_mat*Y_mat).trace()
 
 
-def RealSymmetricSimpleEJA(n, field=QQ):
+class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1368,7 +1473,7 @@ def RealSymmetricSimpleEJA(n, field=QQ):
 
     EXAMPLES::
 
-        sage: J = RealSymmetricSimpleEJA(2)
+        sage: J = RealSymmetricEJA(2)
         sage: e0, e1, e2 = J.gens()
         sage: e0*e0
         e0
@@ -1383,22 +1488,44 @@ def RealSymmetricSimpleEJA(n, field=QQ):
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
-        sage: J = RealSymmetricSimpleEJA(n)
+        sage: J = RealSymmetricEJA(n)
         sage: J.degree() == (n^2 + n)/2
         True
 
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
-    S = _real_symmetric_basis(n, field=field)
-    (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _real_symmetric_basis(n, field=field)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,
-                                                   Qs,
-                                                   rank=n,
-                                                   natural_basis=T,
-                                                   inner_product=_matrix_ip)
+        fdeja = super(RealSymmetricEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        return _matrix_ip(x,y)
 
 
-def ComplexHermitianSimpleEJA(n, field=QQ):
+class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -1411,47 +1538,110 @@ def ComplexHermitianSimpleEJA(n, field=QQ):
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
-        sage: J = ComplexHermitianSimpleEJA(n)
+        sage: J = ComplexHermitianEJA(n)
         sage: J.degree() == n^2
         True
 
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
-    S = _complex_hermitian_basis(n)
-    (Qs, T) = _multiplication_table_from_matrix_basis(S)
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _complex_hermitian_basis(n)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
 
-    # Since a+bi on the diagonal is represented as
-    #
-    #   a + bi  = [  a  b  ]
-    #             [ -b  a  ],
-    #
-    # we'll double-count the "a" entries if we take the trace of
-    # the embedding.
-    ip = lambda X,Y: _matrix_ip(X,Y)/2
+        fdeja = super(ComplexHermitianEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,
-                                                   Qs,
-                                                   rank=n,
-                                                   natural_basis=T,
-                                                   inner_product=ip)
+    def inner_product(self, x, y):
+        # Since a+bi on the diagonal is represented as
+        #
+        #   a + bi  = [  a  b  ]
+        #             [ -b  a  ],
+        #
+        # we'll double-count the "a" entries if we take the trace of
+        # the embedding.
+        return _matrix_ip(x,y)/2
 
 
-def QuaternionHermitianSimpleEJA(n):
+class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
     real-part-of-trace inner product. It has dimension `2n^2 - n` over
     the reals.
-    """
-    pass
 
-def OctonionHermitianSimpleEJA(n):
-    """
-    This shit be crazy. It has dimension 27 over the reals.
+    TESTS:
+
+    The degree of this algebra is `n^2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: J.degree() == 2*(n^2) - n
+        True
+
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
-    n = 3
-    pass
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _quaternion_hermitian_basis(n)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
 
-def JordanSpinSimpleEJA(n, field=QQ):
+        fdeja = super(QuaternionHermitianEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        # Since a+bi+cj+dk on the diagonal is represented as
+        #
+        #   a + bi +cj + dk = [  a  b  c  d]
+        #                     [ -b  a -d  c]
+        #                     [ -c  d  a -b]
+        #                     [ -d -c  b  a],
+        #
+        # we'll quadruple-count the "a" entries if we take the trace of
+        # the embedding.
+        return _matrix_ip(x,y)/4
+
+
+class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the usual inner product and jordan product ``x*y =
@@ -1462,7 +1652,7 @@ def JordanSpinSimpleEJA(n, field=QQ):
 
     This multiplication table can be verified by hand::
 
-        sage: J = JordanSpinSimpleEJA(4)
+        sage: J = JordanSpinEJA(4)
         sage: e0,e1,e2,e3 = J.gens()
         sage: e0*e0
         e0
@@ -1479,31 +1669,34 @@ def JordanSpinSimpleEJA(n, field=QQ):
         sage: e2*e3
         0
 
-    In one dimension, this is the reals under multiplication::
+    """
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        Qs = []
+        id_matrix = identity_matrix(field, n)
+        for i in xrange(n):
+            ei = id_matrix.column(i)
+            Qi = zero_matrix(field, n)
+            Qi.set_row(0, ei)
+            Qi.set_column(0, ei)
+            Qi += diagonal_matrix(n, [ei[0]]*n)
+            # The addition of the diagonal matrix adds an extra ei[0] in the
+            # upper-left corner of the matrix.
+            Qi[0,0] = Qi[0,0] * ~field(2)
+            Qs.append(Qi)
+
+        fdeja = super(JordanSpinEJA, cls)
+        return fdeja.__classcall_private__(cls, field, Qs)
 
-        sage: J1 = JordanSpinSimpleEJA(1)
-        sage: J2 = eja_rn(1)
-        sage: J1 == J2
-        True
+    def rank(self):
+        """
+        Return the rank of this Jordan Spin Algebra.
 
-    """
-    Qs = []
-    id_matrix = identity_matrix(field, n)
-    for i in xrange(n):
-        ei = id_matrix.column(i)
-        Qi = zero_matrix(field, n)
-        Qi.set_row(0, ei)
-        Qi.set_column(0, ei)
-        Qi += diagonal_matrix(n, [ei[0]]*n)
-        # The addition of the diagonal matrix adds an extra ei[0] in the
-        # upper-left corner of the matrix.
-        Qi[0,0] = Qi[0,0] * ~field(2)
-        Qs.append(Qi)
-
-    # The rank of the spin factor algebra is two, UNLESS we're in a
-    # one-dimensional ambient space (the rank is bounded by the
-    # ambient dimension).
-    return FiniteDimensionalEuclideanJordanAlgebra(field,
-                                                   Qs,
-                                                   rank=min(n,2),
-                                                   inner_product=_usual_ip)
+        The rank of the spin algebra is two, unless we're in a
+        one-dimensional ambient space (because the rank is bounded by
+        the ambient dimension).
+        """
+        return min(self.dimension(),2)
+
+    def inner_product(self, x, y):
+        return _usual_ip(x,y)