]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: fix an erroneous test case.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 87a0ca0592b8103ec3410fef57a1134f26a0bf9b..30d04f4a352b7d553470bd456d18d224e2ec5428 100644 (file)
@@ -5,12 +5,405 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
+from sage.categories.morphism import SetMorphism
 from sage.structure.element import is_Matrix
 from sage.structure.category_object import normalize_names
 
 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_morphism import FiniteDimensionalAlgebraMorphism, FiniteDimensionalAlgebraHomset
+
+
+class FiniteDimensionalEuclideanJordanAlgebraHomset(FiniteDimensionalAlgebraHomset):
+
+    def has_coerce_map_from(self, S):
+        """
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: H = J.Hom(J)
+            sage: H.has_coerce_map_from(QQ)
+            True
+
+        """
+        try:
+            # The Homset classes override has_coerce_map_from() with
+            # something that crashes when it's given e.g. QQ.
+            if S.is_subring(self.codomain().base_ring()):
+                return True
+        except:
+            pclass = super(FiniteDimensionalEuclideanJordanAlgebraHomset, self)
+            return pclass.has_coerce_map_from(S)
+
+
+    def _coerce_map_from_(self, S):
+        """
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: H = J.Hom(J)
+            sage: H.coerce(2)
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [2 0 0]
+            [0 2 0]
+            [0 0 2]
+
+        """
+        C = self.codomain()
+        R = C.base_ring()
+        if S.is_subring(R):
+            h = S.hom(self.codomain())
+            return SetMorphism(Hom(S,C), lambda x: h(x).operator())
+
+
+    def __call__(self, x):
+        """
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: H = J.Hom(J)
+            sage: H(2)
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [2 0 0]
+            [0 2 0]
+            [0 0 2]
+
+        """
+        if x in self.base_ring():
+            cols = self.domain().dimension()
+            rows = self.codomain().dimension()
+            x = x*identity_matrix(self.codomain().base_ring(), rows, cols)
+        return FiniteDimensionalEuclideanJordanAlgebraMorphism(self, x)
+
+
+    def one(self):
+        """
+        Return the identity morphism, but as a member of the right
+        space (so that we can add it, multiply it, etc.)
+        """
+        cols = self.domain().dimension()
+        rows = self.codomain().dimension()
+        mat = identity_matrix(self.base_ring(), rows, cols)
+        return FiniteDimensionalEuclideanJordanAlgebraMorphism(self, mat)
+
+
+
+class FiniteDimensionalEuclideanJordanAlgebraMorphism(FiniteDimensionalAlgebraMorphism):
+    """
+    A linear map between two finite-dimensional EJAs.
+
+    This is a very thin wrapper around FiniteDimensionalAlgebraMorphism
+    that does only a few things:
+
+      1. Avoids the ``unitary`` and ``check`` arguments to the constructor
+         that will always be ``False``. This is necessary because these
+         are homomorphisms with respect to ADDITION, but the SageMath
+         machinery wants to check that they're homomorphisms with respect
+         to (Jordan) MULTIPLICATION. That obviously doesn't work.
+
+      2. Inputs and outputs the underlying matrix with respect to COLUMN
+         vectors, unlike the parent class.
+
+      3. Allows us to add, subtract, negate, multiply (compose), and
+         invert morphisms in the obvious way.
+
+    If this seems a bit heavyweight, it is. I would have been happy to
+    use a the ring morphism that underlies the finite-dimensional
+    algebra morphism, but they don't seem to be callable on elements of
+    our EJA, and you can't add/multiply/etc. them.
+    """
+    def _add_(self, other):
+        """
+        Add two EJA morphisms in the obvious way.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x = J.zero()
+            sage: y = J.one()
+            sage: x.operator() + y.operator()
+            Morphism from Euclidean Jordan algebra of degree 6 over Rational
+            Field to Euclidean Jordan algebra of degree 6 over Rational Field
+            given by matrix
+            [1 0 0 0 0 0]
+            [0 1 0 0 0 0]
+            [0 0 1 0 0 0]
+            [0 0 0 1 0 0]
+            [0 0 0 0 1 0]
+            [0 0 0 0 0 1]
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: (x.operator() + y.operator()) in J.Hom(J)
+            True
+
+        """
+        P = self.parent()
+        if not other in P:
+            raise ValueError("summands must live in the same space")
+
+        return FiniteDimensionalEuclideanJordanAlgebraMorphism(
+                  P,
+                  self.matrix() + other.matrix() )
+
+
+    def __init__(self, parent, f):
+        FiniteDimensionalAlgebraMorphism.__init__(self,
+                                                  parent,
+                                                  f.transpose(),
+                                                  unitary=False,
+                                                  check=False)
+
+
+    def __invert__(self):
+        """
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: x = J.linear_combination(zip(range(len(J.gens())), J.gens()))
+            sage: x.is_invertible()
+            True
+            sage: ~x.operator()
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [-3/2    2 -1/2]
+            [   1    0    0]
+            [-1/2    0  1/2]
+            sage: x.operator_matrix().inverse()
+            [-3/2    2 -1/2]
+            [   1    0    0]
+            [-1/2    0  1/2]
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: not x.is_invertible() or (
+            ....:   (~x.operator()).matrix() == x.operator_matrix().inverse() )
+            True
+
+        """
+        A = self.matrix()
+        if not A.is_invertible():
+            raise ValueError("morphism is not invertible")
+
+        P = self.parent()
+        return FiniteDimensionalEuclideanJordanAlgebraMorphism(self.parent(),
+                                                                A.inverse())
+
+    def _lmul_(self, right):
+        """
+        Compose two EJA morphisms using multiplicative notation.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: x = J.zero()
+            sage: y = J.one()
+            sage: x.operator() * y.operator()
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [0 0 0]
+            [0 0 0]
+            [0 0 0]
+
+        ::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: x = J.linear_combination(zip(range(len(J.gens())), J.gens()))
+            sage: x.operator()
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [  0   1   0]
+            [1/2   1 1/2]
+            [  0   1   2]
+            sage: 2*x.operator()
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [0 2 0]
+            [1 2 1]
+            [0 2 4]
+            sage: x.operator()*2
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [0 2 0]
+            [1 2 1]
+            [0 2 4]
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: (x.operator() * y.operator()) in J.Hom(J)
+            True
+
+        """
+        try:
+            # I think the morphism classes break the coercion framework
+            # somewhere along the way, so we have to do this ourselves.
+            right = self.parent().coerce(right)
+        except:
+            pass
+
+        if not right.codomain() is self.domain():
+            raise ValueError("(co)domains must agree for composition")
+
+        return FiniteDimensionalEuclideanJordanAlgebraMorphism(
+                 self.parent(),
+                 self.matrix()*right.matrix() )
+
+    __mul__ = _lmul_
+
+
+    def __pow__(self, n):
+        """
+
+        TESTS::
+
+            sage: J = JordanSpinEJA(4)
+            sage: e0,e1,e2,e3 = J.gens()
+            sage: x = -5/2*e0 + 1/2*e2 + 20*e3
+            sage: Qx = x.quadratic_representation()
+            sage: Qx^0
+            Morphism from Euclidean Jordan algebra of degree 4 over Rational
+            Field to Euclidean Jordan algebra of degree 4 over Rational Field
+            given by matrix
+            [1 0 0 0]
+            [0 1 0 0]
+            [0 0 1 0]
+            [0 0 0 1]
+            sage: (x^0).quadratic_representation() == Qx^0
+            True
+
+        """
+        if n == 0:
+            # We get back the stupid identity morphism which doesn't
+            # live in the right space.
+            return self.parent().one()
+        elif n == 1:
+            return self
+        else:
+            return FiniteDimensionalAlgebraMorphism.__pow__(self,n)
+
+
+    def _neg_(self):
+        """
+        Negate this morphism.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: x = J.one()
+            sage: -x.operator()
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational Field
+            given by matrix
+            [-1  0  0]
+            [ 0 -1  0]
+            [ 0  0 -1]
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: -x.operator() in J.Hom(J)
+            True
+
+        """
+        return FiniteDimensionalEuclideanJordanAlgebraMorphism(
+                  self.parent(),
+                  -self.matrix() )
+
+
+    def _repr_(self):
+        """
+        We override only the representation that is shown to the user,
+        because we want the matrix to be with respect to COLUMN vectors.
+
+        TESTS:
+
+        Ensure that we see the transpose of the underlying matrix object:
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x = J.linear_combination(zip(range(len(J.gens())), J.gens()))
+            sage: L = x.operator()
+            sage: L
+            Morphism from Euclidean Jordan algebra of degree 6 over Rational
+            Field to Euclidean Jordan algebra of degree 6 over Rational Field
+            given by matrix
+            [  0   1   2   0   0   0]
+            [1/2 3/2   2 1/2   1   0]
+            [  1   2 5/2   0 1/2   1]
+            [  0   1   0   3   4   0]
+            [  0   1 1/2   2   4   2]
+            [  0   0   2   0   4   5]
+            sage: L._matrix
+            [  0 1/2   1   0   0   0]
+            [  1 3/2   2   1   1   0]
+            [  2   2 5/2   0 1/2   2]
+            [  0 1/2   0   3   2   0]
+            [  0   1 1/2   4   4   4]
+            [  0   0   1   0   2   5]
+
+        """
+        return "Morphism from {} to {} given by matrix\n{}".format(
+            self.domain(), self.codomain(), self.matrix())
+
+
+    def __sub__(self, other):
+        """
+        Subtract one morphism from another using addition and negation.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: L1 = J.one().operator()
+            sage: L1 - L1
+            Morphism from Euclidean Jordan algebra of degree 3 over Rational
+            Field to Euclidean Jordan algebra of degree 3 over Rational
+            Field given by matrix
+            [0 0 0]
+            [0 0 0]
+            [0 0 0]
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x.operator() - y.operator() in J.Hom(J)
+            True
+
+        """
+        return self + (-other)
+
+
+    def matrix(self):
+        """
+        Return the matrix of this morphism with respect to a left-action
+        on column vectors.
+        """
+        return FiniteDimensionalAlgebraMorphism.matrix(self).transpose()
+
 
 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     @staticmethod
@@ -20,7 +413,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                               names='e',
                               assume_associative=False,
                               category=None,
-                              rank=None):
+                              rank=None,
+                              natural_basis=None):
         n = len(mult_table)
         mult_table = [b.base_extend(field) for b in mult_table]
         for b in mult_table:
@@ -29,7 +423,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 raise ValueError("input is not a multiplication table")
         mult_table = tuple(mult_table)
 
-        cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
+        cat = FiniteDimensionalAlgebrasWithBasis(field)
         cat.or_subcategory(category)
         if assume_associative:
             cat = cat.Associative()
@@ -43,16 +437,43 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                                  assume_associative=assume_associative,
                                  names=names,
                                  category=cat,
-                                 rank=rank)
+                                 rank=rank,
+                                 natural_basis=natural_basis)
 
 
-    def __init__(self, field,
+    def _Hom_(self, B, cat):
+        """
+        Construct a homset of ``self`` and ``B``.
+        """
+        return FiniteDimensionalEuclideanJordanAlgebraHomset(self,
+                                                             B,
+                                                             category=cat)
+
+
+    def __init__(self,
+                 field,
                  mult_table,
                  names='e',
                  assume_associative=False,
                  category=None,
-                 rank=None):
+                 rank=None,
+                 natural_basis=None):
+        """
+        EXAMPLES:
+
+        By definition, Jordan multiplication commutes::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x*y == y*x
+            True
+
+        """
         self._rank = rank
+        self._natural_basis = natural_basis
+        self._multiplication_table = mult_table
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
                      mult_table,
@@ -67,6 +488,245 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         fmt = "Euclidean Jordan algebra of degree {} over {}"
         return fmt.format(self.degree(), self.base_ring())
 
+
+    def _a_regular_element(self):
+        """
+        Guess a regular element. Needed to compute the basis for our
+        characteristic polynomial coefficients.
+        """
+        gs = self.gens()
+        z = self.sum( (i+1)*gs[i] for i in range(len(gs)) )
+        if not z.is_regular():
+            raise ValueError("don't know a regular element")
+        return z
+
+
+    @cached_method
+    def _charpoly_basis_space(self):
+        """
+        Return the vector space spanned by the basis used in our
+        characteristic polynomial coefficients. This is used not only to
+        compute those coefficients, but also any time we need to
+        evaluate the coefficients (like when we compute the trace or
+        determinant).
+        """
+        z = self._a_regular_element()
+        V = z.vector().parent().ambient_vector_space()
+        V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
+        b =  (V1.basis() + V1.complement().basis())
+        return V.span_of_basis(b)
+
+
+    @cached_method
+    def _charpoly_coeff(self, i):
+        """
+        Return the coefficient polynomial "a_{i}" of this algebra's
+        general characteristic polynomial.
+
+        Having this be a separate cached method lets us compute and
+        store the trace/determinant (a_{r-1} and a_{0} respectively)
+        separate from the entire characteristic polynomial.
+        """
+        (A_of_x, x, xr, detA) = self._charpoly_matrix_system()
+        R = A_of_x.base_ring()
+        if i >= self.rank():
+            # Guaranteed by theory
+            return R.zero()
+
+        # Danger: the in-place modification is done for performance
+        # reasons (reconstructing a matrix with huge polynomial
+        # entries is slow), but I don't know how cached_method works,
+        # so it's highly possible that we're modifying some global
+        # list variable by reference, here. In other words, you
+        # probably shouldn't call this method twice on the same
+        # algebra, at the same time, in two threads
+        Ai_orig = A_of_x.column(i)
+        A_of_x.set_column(i,xr)
+        numerator = A_of_x.det()
+        A_of_x.set_column(i,Ai_orig)
+
+        # We're relying on the theory here to ensure that each a_i is
+        # indeed back in R, and the added negative signs are to make
+        # the whole charpoly expression sum to zero.
+        return R(-numerator/detA)
+
+
+    @cached_method
+    def _charpoly_matrix_system(self):
+        """
+        Compute the matrix whose entries A_ij are polynomials in
+        X1,...,XN, the vector ``x`` of variables X1,...,XN, the vector
+        corresponding to `x^r` and the determinent of the matrix A =
+        [A_ij]. In other words, all of the fixed (cachable) data needed
+        to compute the coefficients of the characteristic polynomial.
+        """
+        r = self.rank()
+        n = self.dimension()
+
+        # Construct a new algebra over a multivariate polynomial ring...
+        names = ['X' + str(i) for i in range(1,n+1)]
+        R = PolynomialRing(self.base_ring(), names)
+        J = FiniteDimensionalEuclideanJordanAlgebra(R,
+                                                    self._multiplication_table,
+                                                    rank=r)
+
+        idmat = identity_matrix(J.base_ring(), n)
+
+        W = self._charpoly_basis_space()
+        W = W.change_ring(R.fraction_field())
+
+        # Starting with the standard coordinates x = (X1,X2,...,Xn)
+        # and then converting the entries to W-coordinates allows us
+        # to pass in the standard coordinates to the charpoly and get
+        # back the right answer. Specifically, with x = (X1,X2,...,Xn),
+        # we have
+        #
+        #   W.coordinates(x^2) eval'd at (standard z-coords)
+        #     =
+        #   W-coords of (z^2)
+        #     =
+        #   W-coords of (standard coords of x^2 eval'd at std-coords of z)
+        #
+        # We want the middle equivalent thing in our matrix, but use
+        # the first equivalent thing instead so that we can pass in
+        # standard coordinates.
+        x = J(vector(R, R.gens()))
+        l1 = [column_matrix(W.coordinates((x**k).vector())) for k in range(r)]
+        l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
+        A_of_x = block_matrix(R, 1, n, (l1 + l2))
+        xr = W.coordinates((x**r).vector())
+        return (A_of_x, x, xr, A_of_x.det())
+
+
+    @cached_method
+    def characteristic_polynomial(self):
+        """
+
+        .. WARNING::
+
+            This implementation doesn't guarantee that the polynomial
+            denominator in the coefficients is not identically zero, so
+            theoretically it could crash. The way that this is handled
+            in e.g. Faraut and Koranyi is to use a basis that guarantees
+            the denominator is non-zero. But, doing so requires knowledge
+            of at least one regular element, and we don't even know how
+            to do that. The trade-off is that, if we use the standard basis,
+            the resulting polynomial will accept the "usual" coordinates. In
+            other words, we don't have to do a change of basis before e.g.
+            computing the trace or determinant.
+
+        EXAMPLES:
+
+        The characteristic polynomial in the spin algebra is given in
+        Alizadeh, Example 11.11::
+
+            sage: J = JordanSpinEJA(3)
+            sage: p = J.characteristic_polynomial(); p
+            X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
+            sage: xvec = J.one().vector()
+            sage: p(*xvec)
+            t^2 - 2*t + 1
+
+        """
+        r = self.rank()
+        n = self.dimension()
+
+        # The list of coefficient polynomials a_1, a_2, ..., a_n.
+        a = [ self._charpoly_coeff(i) for i in range(n) ]
+
+        # We go to a bit of trouble here to reorder the
+        # indeterminates, so that it's easier to evaluate the
+        # characteristic polynomial at x's coordinates and get back
+        # something in terms of t, which is what we want.
+        R = a[0].parent()
+        S = PolynomialRing(self.base_ring(),'t')
+        t = S.gen(0)
+        S = PolynomialRing(S, R.variable_names())
+        t = S(t)
+
+        # Note: all entries past the rth should be zero. The
+        # coefficient of the highest power (x^r) is 1, but it doesn't
+        # appear in the solution vector which contains coefficients
+        # for the other powers (to make them sum to x^r).
+        if (r < n):
+            a[r] = 1 # corresponds to x^r
+        else:
+            # When the rank is equal to the dimension, trying to
+            # assign a[r] goes out-of-bounds.
+            a.append(1) # corresponds to x^r
+
+        return sum( a[k]*(t**k) for k in range(len(a)) )
+
+
+    def inner_product(self, x, y):
+        """
+        The inner product associated with this Euclidean Jordan algebra.
+
+        Defaults to the trace inner product, but can be overridden by
+        subclasses if they are sure that the necessary properties are
+        satisfied.
+
+        EXAMPLES:
+
+        The inner product must satisfy its axiom for this algebra to truly
+        be a Euclidean Jordan Algebra::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            True
+
+        """
+        if (not x in self) or (not y in self):
+            raise TypeError("arguments must live in this algebra")
+        return x.trace_inner_product(y)
+
+
+    def natural_basis(self):
+        """
+        Return a more-natural representation of this algebra's basis.
+
+        Every finite-dimensional Euclidean Jordan Algebra is a direct
+        sum of five simple algebras, four of which comprise Hermitian
+        matrices. This method returns the original "natural" basis
+        for our underlying vector space. (Typically, the natural basis
+        is used to construct the multiplication table in the first place.)
+
+        Note that this will always return a matrix. The standard basis
+        in `R^n` will be returned as `n`-by-`1` column matrices.
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(2)
+            sage: J.basis()
+            Family (e0, e1, e2)
+            sage: J.natural_basis()
+            (
+            [1 0]  [0 1]  [0 0]
+            [0 0], [1 0], [0 1]
+            )
+
+        ::
+
+            sage: J = JordanSpinEJA(2)
+            sage: J.basis()
+            Family (e0, e1)
+            sage: J.natural_basis()
+            (
+            [1]  [0]
+            [0], [1]
+            )
+
+        """
+        if self._natural_basis is None:
+            return tuple( b.vector().column() for b in self.basis() )
+        else:
+            return self._natural_basis
+
+
     def rank(self):
         """
         Return the rank of this EJA.
@@ -82,6 +742,61 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         An element of a Euclidean Jordan algebra.
         """
 
+        def __dir__(self):
+            """
+            Oh man, I should not be doing this. This hides the "disabled"
+            methods ``left_matrix`` and ``matrix`` from introspection;
+            in particular it removes them from tab-completion.
+            """
+            return filter(lambda s: s not in ['left_matrix', 'matrix'],
+                          dir(self.__class__) )
+
+
+        def __init__(self, A, elt=None):
+            """
+            EXAMPLES:
+
+            The identity in `S^n` is converted to the identity in the EJA::
+
+                sage: J = RealSymmetricEJA(3)
+                sage: I = identity_matrix(QQ,3)
+                sage: J(I) == J.one()
+                True
+
+            This skew-symmetric matrix can't be represented in the EJA::
+
+                sage: J = RealSymmetricEJA(3)
+                sage: A = matrix(QQ,3, lambda i,j: i-j)
+                sage: J(A)
+                Traceback (most recent call last):
+                ...
+                ArithmeticError: vector is not in free module
+
+            """
+            # Goal: if we're given a matrix, and if it lives in our
+            # parent algebra's "natural ambient space," convert it
+            # into an algebra element.
+            #
+            # The catch is, we make a recursive call after converting
+            # the given matrix into a vector that lives in the algebra.
+            # This we need to try the parent class initializer first,
+            # to avoid recursing forever if we're given something that
+            # already fits into the algebra, but also happens to live
+            # in the parent's "natural ambient space" (this happens with
+            # vectors in R^n).
+            try:
+                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
+            except ValueError:
+                natural_basis = A.natural_basis()
+                if elt in natural_basis[0].matrix_space():
+                    # Thanks for nothing! Matrix spaces aren't vector
+                    # spaces in Sage, so we have to figure out its
+                    # natural-basis coordinates ourselves.
+                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
+                    W = V.span( _mat2vec(s) for s in natural_basis )
+                    coords =  W.coordinates(_mat2vec(elt))
+                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
+
         def __pow__(self, n):
             """
             Return ``self`` raised to the power ``n``.
@@ -95,11 +810,32 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 instead of column vectors! We, on the other hand, assume column
                 vectors everywhere.
 
-            EXAMPLES:
+            EXAMPLES::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_matrix()*x.vector() == (x^2).vector()
+                True
+
+            A few examples of power-associativity::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x*(x*x)*(x*x) == x^5
+                True
+                sage: (x*x)*(x*x*x) == x^5
+                True
+
+            We also know that powers operator-commute (Koecher, Chapter
+            III, Corollary 1)::
 
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
-                sage: x.matrix()*x.vector() == (x**2).vector()
+                sage: m = ZZ.random_element(0,10)
+                sage: n = ZZ.random_element(0,10)
+                sage: Lxm = (x^m).operator_matrix()
+                sage: Lxn = (x^n).operator_matrix()
+                sage: Lxm*Lxn == Lxn*Lxm
                 True
 
             """
@@ -109,22 +845,184 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             elif n == 1:
                 return self
             else:
-                return A.element_class(A, (self.matrix()**(n-1))*self.vector())
+                return A( (self.operator_matrix()**(n-1))*self.vector() )
+
+
+        def apply_univariate_polynomial(self, p):
+            """
+            Apply the univariate polynomial ``p`` to this element.
+
+            A priori, SageMath won't allow us to apply a univariate
+            polynomial to an element of an EJA, because we don't know
+            that EJAs are rings (they are usually not associative). Of
+            course, we know that EJAs are power-associative, so the
+            operation is ultimately kosher. This function sidesteps
+            the CAS to get the answer we want and expect.
+
+            EXAMPLES::
+
+                sage: R = PolynomialRing(QQ, 't')
+                sage: t = R.gen(0)
+                sage: p = t^4 - t^3 + 5*t - 2
+                sage: J = RealCartesianProductEJA(5)
+                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
+                True
+
+            TESTS:
+
+            We should always get back an element of the algebra::
+
+                sage: set_random_seed()
+                sage: p = PolynomialRing(QQ, 't').random_element()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: x.apply_univariate_polynomial(p) in J
+                True
+
+            """
+            if len(p.variables()) > 1:
+                raise ValueError("not a univariate polynomial")
+            P = self.parent()
+            R = P.base_ring()
+            # Convert the coeficcients to the parent's base ring,
+            # because a priori they might live in an (unnecessarily)
+            # larger ring for which P.sum() would fail below.
+            cs = [ R(c) for c in p.coefficients(sparse=False) ]
+            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
 
 
         def characteristic_polynomial(self):
             """
-            Return my characteristic polynomial (if I'm a regular
-            element).
+            Return the characteristic polynomial of this element.
+
+            EXAMPLES:
+
+            The rank of `R^3` is three, and the minimal polynomial of
+            the identity element is `(t-1)` from which it follows that
+            the characteristic polynomial should be `(t-1)^3`::
+
+                sage: J = RealCartesianProductEJA(3)
+                sage: J.one().characteristic_polynomial()
+                t^3 - 3*t^2 + 3*t - 1
+
+            Likewise, the characteristic of the zero element in the
+            rank-three algebra `R^{n}` should be `t^{3}`::
+
+                sage: J = RealCartesianProductEJA(3)
+                sage: J.zero().characteristic_polynomial()
+                t^3
+
+            The characteristic polynomial of an element should evaluate
+            to zero on that element::
+
+                sage: set_random_seed()
+                sage: x = RealCartesianProductEJA(3).random_element()
+                sage: p = x.characteristic_polynomial()
+                sage: x.apply_univariate_polynomial(p)
+                0
 
-            Eventually this should be implemented in terms of the parent
-            algebra's characteristic polynomial that works for ALL
-            elements.
             """
-            if self.is_regular():
-                return self.minimal_polynomial()
-            else:
-                raise NotImplementedError('irregular element')
+            p = self.parent().characteristic_polynomial()
+            return p(*self.vector())
+
+
+        def inner_product(self, other):
+            """
+            Return the parent algebra's inner product of myself and ``other``.
+
+            EXAMPLES:
+
+            The inner product in the Jordan spin algebra is the usual
+            inner product on `R^n` (this example only works because the
+            basis for the Jordan algebra is the standard basis in `R^n`)::
+
+                sage: J = JordanSpinEJA(3)
+                sage: x = vector(QQ,[1,2,3])
+                sage: y = vector(QQ,[4,5,6])
+                sage: x.inner_product(y)
+                32
+                sage: J(x).inner_product(J(y))
+                32
+
+            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
+            multiplication is the usual matrix multiplication in `S^n`,
+            so the inner product of the identity matrix with itself
+            should be the `n`::
+
+                sage: J = RealSymmetricEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Likewise, the inner product on `C^n` is `<X,Y> =
+            Re(trace(X*Y))`, where we must necessarily take the real
+            part because the product of Hermitian matrices may not be
+            Hermitian::
+
+                sage: J = ComplexHermitianEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            Ditto for the quaternions::
+
+                sage: J = QuaternionHermitianEJA(3)
+                sage: J.one().inner_product(J.one())
+                3
+
+            TESTS:
+
+            Ensure that we can always compute an inner product, and that
+            it gives us back a real number::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: x.inner_product(y) in RR
+                True
+
+            """
+            P = self.parent()
+            if not other in P:
+                raise TypeError("'other' must live in the same algebra")
+
+            return P.inner_product(self, other)
+
+
+        def operator_commutes_with(self, other):
+            """
+            Return whether or not this element operator-commutes
+            with ``other``.
+
+            EXAMPLES:
+
+            The definition of a Jordan algebra says that any element
+            operator-commutes with its square::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.operator_commutes_with(x^2)
+                True
+
+            TESTS:
+
+            Test Lemma 1 from Chapter III of Koecher::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: u = J.random_element()
+                sage: v = J.random_element()
+                sage: lhs = u.operator_commutes_with(u*v)
+                sage: rhs = v.operator_commutes_with(u^2)
+                sage: lhs == rhs
+                True
+
+            """
+            if not other in self.parent():
+                raise TypeError("'other' must live in the same algebra")
+
+            A = self.operator_matrix()
+            B = other.operator_matrix()
+            return (A*B == B*A)
 
 
         def det(self):
@@ -133,24 +1031,146 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinSimpleEJA(2)
+                sage: J = JordanSpinEJA(2)
                 sage: e0,e1 = J.gens()
-                sage: x = e0 + e1
+                sage: x = sum( J.gens() )
                 sage: x.det()
                 0
-                sage: J = JordanSpinSimpleEJA(3)
+
+            ::
+
+                sage: J = JordanSpinEJA(3)
                 sage: e0,e1,e2 = J.gens()
-                sage: x = e0 + e1 + e2
+                sage: x = sum( J.gens() )
                 sage: x.det()
                 -1
 
+            TESTS:
+
+            An element is invertible if and only if its determinant is
+            non-zero::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.is_invertible() == (x.det() != 0)
+                True
+
             """
-            cs = self.characteristic_polynomial().coefficients(sparse=False)
-            r = len(cs) - 1
-            if r >= 0:
-                return cs[0] * (-1)**r
-            else:
-                raise ValueError('charpoly had no coefficients')
+            P = self.parent()
+            r = P.rank()
+            p = P._charpoly_coeff(0)
+            # The _charpoly_coeff function already adds the factor of
+            # -1 to ensure that _charpoly_coeff(0) is really what
+            # appears in front of t^{0} in the charpoly. However,
+            # we want (-1)^r times THAT for the determinant.
+            return ((-1)**r)*p(*self.vector())
+
+
+        def inverse(self):
+            """
+            Return the Jordan-multiplicative inverse of this element.
+
+            ALGORITHM:
+
+            We appeal to the quadratic representation as in Koecher's
+            Theorem 12 in Chapter III, Section 5.
+
+            EXAMPLES:
+
+            The inverse in the spin factor algebra is given in Alizadeh's
+            Example 11.11::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinEJA(n)
+                sage: x = J.random_element()
+                sage: while not x.is_invertible():
+                ....:     x = J.random_element()
+                sage: x_vec = x.vector()
+                sage: x0 = x_vec[0]
+                sage: x_bar = x_vec[1:]
+                sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
+                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+                sage: x_inverse = coeff*inv_vec
+                sage: x.inverse() == J(x_inverse)
+                True
+
+            TESTS:
+
+            The identity element is its own inverse::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().inverse() == J.one()
+                True
+
+            If an element has an inverse, it acts like one::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
+                True
+
+            The inverse of the inverse is what we started with::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
+                True
+
+            The zero element is never invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja().zero().inverse()
+                Traceback (most recent call last):
+                ...
+                ValueError: element is not invertible
+
+            """
+            if not self.is_invertible():
+                raise ValueError("element is not invertible")
+
+            return (~self.quadratic_representation())(self)
+
+
+        def is_invertible(self):
+            """
+            Return whether or not this element is invertible.
+
+            We can't use the superclass method because it relies on
+            the algebra being associative.
+
+            ALGORITHM:
+
+            The usual way to do this is to check if the determinant is
+            zero, but we need the characteristic polynomial for the
+            determinant. The minimal polynomial is a lot easier to get,
+            so we use Corollary 2 in Chapter V of Koecher to check
+            whether or not the paren't algebra's zero element is a root
+            of this element's minimal polynomial.
+
+            TESTS:
+
+            The identity element is always invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().is_invertible()
+                True
+
+            The zero element is never invertible::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.zero().is_invertible()
+                False
+
+            """
+            zero = self.parent().zero()
+            p = self.minimal_polynomial()
+            return not (p(zero) == zero)
 
 
         def is_nilpotent(self):
@@ -207,7 +1227,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The identity element always has degree one, but any element
             linearly-independent from it is regular::
 
-                sage: J = JordanSpinSimpleEJA(5)
+                sage: J = JordanSpinEJA(5)
                 sage: J.one().is_regular()
                 False
                 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
@@ -232,95 +1252,246 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinSimpleEJA(4)
-                sage: J.one().degree()
-                1
-                sage: e0,e1,e2,e3 = J.gens()
-                sage: (e0 - e1).degree()
-                2
+                sage: J = JordanSpinEJA(4)
+                sage: J.one().degree()
+                1
+                sage: e0,e1,e2,e3 = J.gens()
+                sage: (e0 - e1).degree()
+                2
+
+            In the spin factor algebra (of rank two), all elements that
+            aren't multiples of the identity are regular::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinEJA(n)
+                sage: x = J.random_element()
+                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+                True
+
+            """
+            return self.span_of_powers().dimension()
+
+
+        def left_matrix(self):
+            """
+            Our parent class defines ``left_matrix`` and ``matrix``
+            methods whose names are misleading. We don't want them.
+            """
+            raise NotImplementedError("use operator_matrix() instead")
+
+        matrix = left_matrix
+
+
+        def minimal_polynomial(self):
+            """
+            Return the minimal polynomial of this element,
+            as a function of the variable `t`.
+
+            ALGORITHM:
+
+            We restrict ourselves to the associative subalgebra
+            generated by this element, and then return the minimal
+            polynomial of this element's operator matrix (in that
+            subalgebra). This works by Baes Proposition 2.3.16.
+
+            TESTS:
+
+            The minimal polynomial of the identity and zero elements are
+            always the same::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.one().minimal_polynomial()
+                t - 1
+                sage: J.zero().minimal_polynomial()
+                t
+
+            The degree of an element is (by one definition) the degree
+            of its minimal polynomial::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: x.degree() == x.minimal_polynomial().degree()
+                True
+
+            The minimal polynomial and the characteristic polynomial coincide
+            and are known (see Alizadeh, Example 11.11) for all elements of
+            the spin factor algebra that aren't scalar multiples of the
+            identity::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(2,10)
+                sage: J = JordanSpinEJA(n)
+                sage: y = J.random_element()
+                sage: while y == y.coefficient(0)*J.one():
+                ....:     y = J.random_element()
+                sage: y0 = y.vector()[0]
+                sage: y_bar = y.vector()[1:]
+                sage: actual = y.minimal_polynomial()
+                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
+                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
+                sage: bool(actual == expected)
+                True
+
+            The minimal polynomial should always kill its element::
+
+                sage: set_random_seed()
+                sage: x = random_eja().random_element()
+                sage: p = x.minimal_polynomial()
+                sage: x.apply_univariate_polynomial(p)
+                0
+
+            """
+            V = self.span_of_powers()
+            assoc_subalg = self.subalgebra_generated_by()
+            # Mis-design warning: the basis used for span_of_powers()
+            # and subalgebra_generated_by() must be the same, and in
+            # the same order!
+            elt = assoc_subalg(V.coordinates(self.vector()))
+
+            # We get back a symbolic polynomial in 'x' but want a real
+            # polynomial in 't'.
+            p_of_x = elt.operator_matrix().minimal_polynomial()
+            return p_of_x.change_variable_name('t')
+
+
+        def natural_representation(self):
+            """
+            Return a more-natural representation of this element.
+
+            Every finite-dimensional Euclidean Jordan Algebra is a
+            direct sum of five simple algebras, four of which comprise
+            Hermitian matrices. This method returns the original
+            "natural" representation of this element as a Hermitian
+            matrix, if it has one. If not, you get the usual representation.
+
+            EXAMPLES::
+
+                sage: J = ComplexHermitianEJA(3)
+                sage: J.one()
+                e0 + e5 + e8
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0]
+                [0 1 0 0 0 0]
+                [0 0 1 0 0 0]
+                [0 0 0 1 0 0]
+                [0 0 0 0 1 0]
+                [0 0 0 0 0 1]
+
+            ::
+
+                sage: J = QuaternionHermitianEJA(3)
+                sage: J.one()
+                e0 + e9 + e14
+                sage: J.one().natural_representation()
+                [1 0 0 0 0 0 0 0 0 0 0 0]
+                [0 1 0 0 0 0 0 0 0 0 0 0]
+                [0 0 1 0 0 0 0 0 0 0 0 0]
+                [0 0 0 1 0 0 0 0 0 0 0 0]
+                [0 0 0 0 1 0 0 0 0 0 0 0]
+                [0 0 0 0 0 1 0 0 0 0 0 0]
+                [0 0 0 0 0 0 1 0 0 0 0 0]
+                [0 0 0 0 0 0 0 1 0 0 0 0]
+                [0 0 0 0 0 0 0 0 1 0 0 0]
+                [0 0 0 0 0 0 0 0 0 1 0 0]
+                [0 0 0 0 0 0 0 0 0 0 1 0]
+                [0 0 0 0 0 0 0 0 0 0 0 1]
+
+            """
+            B = self.parent().natural_basis()
+            W = B[0].matrix_space()
+            return W.linear_combination(zip(self.vector(), B))
+
+
+        def operator(self):
+            """
+            Return the left-multiplication-by-this-element
+            operator on the ambient algebra.
 
-            In the spin factor algebra (of rank two), all elements that
-            aren't multiples of the identity are regular::
+            TESTS::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: J = random_eja()
                 sage: x = J.random_element()
-                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+                sage: y = J.random_element()
+                sage: x.operator()(y) == x*y
+                True
+                sage: y.operator()(x) == x*y
                 True
 
             """
-            return self.span_of_powers().dimension()
+            P = self.parent()
+            return FiniteDimensionalEuclideanJordanAlgebraMorphism(
+                     Hom(P,P),
+                     self.operator_matrix() )
 
 
-        def matrix(self):
+
+        def operator_matrix(self):
             """
             Return the matrix that represents left- (or right-)
             multiplication by this element in the parent algebra.
 
-            We have to override this because the superclass method
-            returns a matrix that acts on row vectors (that is, on
-            the right).
-            """
-            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            return fda_elt.matrix().transpose()
+            We implement this ourselves to work around the fact that
+            our parent class represents everything with row vectors.
 
+            EXAMPLES:
 
-        def minimal_polynomial(self):
-            """
-            EXAMPLES::
+            Test the first polarization identity from my notes, Koecher Chapter
+            III, or from Baes (2.3)::
 
                 sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lxx = (x*x).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
                 True
 
-            ::
+            Test the second polarization identity from my notes or from
+            Baes (2.4)::
 
                 sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: Lx = x.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Lxy = (x*y).operator_matrix()
+                sage: Lxz = (x*z).operator_matrix()
+                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
                 True
 
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
+            Test the third polarization identity from my notes or from
+            Baes (2.5)::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10).abs()
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: J = random_eja()
+                sage: u = J.random_element()
                 sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: x = SR.symbol('x', domain='real')
-                sage: expected = x^2 - 2*y0*x + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
+                sage: z = J.random_element()
+                sage: Lu = u.operator_matrix()
+                sage: Ly = y.operator_matrix()
+                sage: Lz = z.operator_matrix()
+                sage: Lzy = (z*y).operator_matrix()
+                sage: Luy = (u*y).operator_matrix()
+                sage: Luz = (u*z).operator_matrix()
+                sage: Luyz = (u*(y*z)).operator_matrix()
+                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+                sage: bool(lhs == rhs)
                 True
 
             """
-            # The element we're going to call "minimal_polynomial()" on.
-            # Either myself, interpreted as an element of a finite-
-            # dimensional algebra, or an element of an associative
-            # subalgebra.
-            elt = None
-
-            if self.parent().is_associative():
-                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            else:
-                V = self.span_of_powers()
-                assoc_subalg = self.subalgebra_generated_by()
-                # Mis-design warning: the basis used for span_of_powers()
-                # and subalgebra_generated_by() must be the same, and in
-                # the same order!
-                elt = assoc_subalg(V.coordinates(self.vector()))
-
-            # Recursive call, but should work since elt lives in an
-            # associative algebra.
-            return elt.minimal_polynomial()
+            fda_elt = FiniteDimensionalAlgebraElement(self.parent(), self)
+            return fda_elt.matrix().transpose()
 
 
         def quadratic_representation(self, other=None):
@@ -333,8 +1504,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Alizadeh's Example 11.12::
 
                 sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10).abs()
-                sage: J = JordanSpinSimpleEJA(n)
+                sage: n = ZZ.random_element(1,10)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: x_vec = x.vector()
                 sage: x0 = x_vec[0]
@@ -346,7 +1517,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
                 sage: D = D + 2*x_bar.tensor_product(x_bar)
                 sage: Q = block_matrix(2,2,[A,B,C,D])
-                sage: Q == x.quadratic_representation()
+                sage: Q == x.quadratic_representation().matrix()
                 True
 
             Test all of the properties from Theorem 11.2 in Alizadeh::
@@ -355,49 +1526,87 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: J = random_eja()
                 sage: x = J.random_element()
                 sage: y = J.random_element()
+                sage: Lx = x.operator()
+                sage: Lxx = (x*x).operator()
+                sage: Qx = x.quadratic_representation()
+                sage: Qy = y.quadratic_representation()
+                sage: Qxy = x.quadratic_representation(y)
+                sage: Qex = J.one().quadratic_representation(x)
+                sage: n = ZZ.random_element(10)
+                sage: Qxn = (x^n).quadratic_representation()
 
             Property 1:
 
-                sage: actual = x.quadratic_representation(y)
-                sage: expected = ( (x+y).quadratic_representation()
-                ....:              -x.quadratic_representation()
-                ....:              -y.quadratic_representation() ) / 2
-                sage: actual == expected
+                sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
                 True
 
             Property 2:
 
                 sage: alpha = QQ.random_element()
-                sage: actual = (alpha*x).quadratic_representation()
-                sage: expected = (alpha^2)*x.quadratic_representation()
-                sage: actual == expected
+                sage: (alpha*x).quadratic_representation() == (alpha^2)*Qx
+                True
+
+            Property 3:
+
+                sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
+                True
+
+                sage: not x.is_invertible() or (
+                ....:   ~Qx
+                ....:   ==
+                ....:   x.inverse().quadratic_representation() )
+                True
+
+                sage: Qxy(J.one()) == x*y
+                True
+
+            Property 4:
+
+                sage: not x.is_invertible() or (
+                ....:   x.quadratic_representation(x.inverse())*Qx
+                ....:   == Qx*x.quadratic_representation(x.inverse()) )
+                True
+
+                sage: not x.is_invertible() or (
+                ....:   x.quadratic_representation(x.inverse())*Qx
+                ....:   ==
+                ....:   2*x.operator()*Qex - Qx )
+                True
+
+                sage: 2*x.operator()*Qex - Qx == Lxx
                 True
 
             Property 5:
 
-                sage: Qy = y.quadratic_representation()
-                sage: actual = J(Qy*x.vector()).quadratic_representation()
-                sage: expected = Qy*x.quadratic_representation()*Qy
-                sage: actual == expected
+                sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
                 True
 
             Property 6:
 
-                sage: k = ZZ.random_element(1,10).abs()
-                sage: actual = (x^k).quadratic_representation()
-                sage: expected = (x.quadratic_representation())^k
-                sage: actual == expected
+                sage: Qxn == (Qx)^n
+                True
+
+            Property 7:
+
+                sage: not x.is_invertible() or (
+                ....:   Qx*x.inverse().operator() == Lx )
+                True
+
+            Property 8:
+
+                sage: not x.operator_commutes_with(y) or (
+                ....:   Qx(y)^n == Qxn(y^n) )
                 True
 
             """
             if other is None:
                 other=self
             elif not other in self.parent():
-                raise ArgumentError("'other' must live in the same algebra")
+                raise TypeError("'other' must live in the same algebra")
 
-            return ( self.matrix()*other.matrix()
-                       + other.matrix()*self.matrix()
-                       - (self*other).matrix() )
+            L = self.operator()
+            M = other.operator()
+            return ( L*M + M*L - (self*other).operator() )
 
 
         def span_of_powers(self):
@@ -408,7 +1617,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             # The dimension of the subalgebra can't be greater than
             # the big algebra, so just put everything into a list
             # and let span() get rid of the excess.
-            V = self.vector().parent()
+            #
+            # We do the extra ambient_vector_space() in case we're messing
+            # with polynomials and the direct parent is a module.
+            V = self.vector().parent().ambient_vector_space()
             return V.span( (self**d).vector() for d in xrange(V.dimension()) )
 
 
@@ -430,7 +1642,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
                 sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.matrix()*u.vector() == (u**2).vector()
+                sage: u.operator_matrix()*u.vector() == (u**2).vector()
                 True
 
             """
@@ -477,12 +1689,11 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             TESTS::
 
                 sage: set_random_seed()
-                sage: J = eja_rn(5)
-                sage: c = J.random_element().subalgebra_idempotent()
-                sage: c^2 == c
-                True
-                sage: J = JordanSpinSimpleEJA(5)
-                sage: c = J.random_element().subalgebra_idempotent()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: while x.is_nilpotent():
+                ....:     x = J.random_element()
+                sage: c = x.subalgebra_idempotent()
                 sage: c^2 == c
                 True
 
@@ -502,7 +1713,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             s = 0
             minimal_dim = V.dimension()
             for i in xrange(1, V.dimension()):
-                this_dim = (u**i).matrix().image().dimension()
+                this_dim = (u**i).operator_matrix().image().dimension()
                 if this_dim < minimal_dim:
                     minimal_dim = this_dim
                     s = i
@@ -519,7 +1730,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             # Beware, solve_right() means that we're using COLUMN vectors.
             # Our FiniteDimensionalAlgebraElement superclass uses rows.
             u_next = u**(s+1)
-            A = u_next.matrix()
+            A = u_next.operator_matrix()
             c_coordinates = A.solve_right(u_next.vector())
 
             # Now c_coordinates is the idempotent we want, but it's in
@@ -537,40 +1748,102 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinSimpleEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = e0 + e1 + e2
+                sage: J = JordanSpinEJA(3)
+                sage: x = sum(J.gens())
                 sage: x.trace()
                 2
 
+            ::
+
+                sage: J = RealCartesianProductEJA(5)
+                sage: J.one().trace()
+                5
+
+            TESTS:
+
+            The trace of an element is a real number::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: J.random_element().trace() in J.base_ring()
+                True
+
             """
-            cs = self.characteristic_polynomial().coefficients(sparse=False)
-            if len(cs) >= 2:
-                return -1*cs[-2]
-            else:
-                raise ValueError('charpoly had fewer than 2 coefficients')
+            P = self.parent()
+            r = P.rank()
+            p = P._charpoly_coeff(r-1)
+            # The _charpoly_coeff function already adds the factor of
+            # -1 to ensure that _charpoly_coeff(r-1) is really what
+            # appears in front of t^{r-1} in the charpoly. However,
+            # we want the negative of THAT for the trace.
+            return -p(*self.vector())
 
 
         def trace_inner_product(self, other):
             """
             Return the trace inner product of myself and ``other``.
+
+            TESTS:
+
+            The trace inner product is commutative::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element(); y = J.random_element()
+                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+                True
+
+            The trace inner product is bilinear::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: a = QQ.random_element();
+                sage: actual = (a*(x+z)).trace_inner_product(y)
+                sage: expected = ( a*x.trace_inner_product(y) +
+                ....:              a*z.trace_inner_product(y) )
+                sage: actual == expected
+                True
+                sage: actual = x.trace_inner_product(a*(y+z))
+                sage: expected = ( a*x.trace_inner_product(y) +
+                ....:              a*x.trace_inner_product(z) )
+                sage: actual == expected
+                True
+
+            The trace inner product satisfies the compatibility
+            condition in the definition of a Euclidean Jordan algebra::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: x = J.random_element()
+                sage: y = J.random_element()
+                sage: z = J.random_element()
+                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
+                True
+
             """
             if not other in self.parent():
-                raise ArgumentError("'other' must live in the same algebra")
+                raise TypeError("'other' must live in the same algebra")
 
             return (self*other).trace()
 
 
-def eja_rn(dimension, field=QQ):
+class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
 
+    Note: this is nothing more than the Cartesian product of ``n``
+    copies of the spin algebra. Once Cartesian product algebras
+    are implemented, this can go.
+
     EXAMPLES:
 
     This multiplication table can be verified by hand::
 
-        sage: J = eja_rn(3)
+        sage: J = RealCartesianProductEJA(3)
         sage: e0,e1,e2 = J.gens()
         sage: e0*e0
         e0
@@ -586,16 +1859,21 @@ def eja_rn(dimension, field=QQ):
         e2
 
     """
-    # The FiniteDimensionalAlgebra constructor takes a list of
-    # matrices, the ith representing right multiplication by the ith
-    # basis element in the vector space. So if e_1 = (1,0,0), then
-    # right (Hadamard) multiplication of x by e_1 picks out the first
-    # component of x; and likewise for the ith basis element e_i.
-    Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
-           for i in xrange(dimension) ]
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        # The FiniteDimensionalAlgebra constructor takes a list of
+        # matrices, the ith representing right multiplication by the ith
+        # basis element in the vector space. So if e_1 = (1,0,0), then
+        # right (Hadamard) multiplication of x by e_1 picks out the first
+        # component of x; and likewise for the ith basis element e_i.
+        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
+               for i in xrange(n) ]
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
+        fdeja = super(RealCartesianProductEJA, cls)
+        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
 
+    def inner_product(self, x, y):
+        return _usual_ip(x,y)
 
 
 def random_eja():
@@ -615,6 +1893,12 @@ def random_eja():
       * The ``n``-by-``n`` rational symmetric matrices with the symmetric
         product.
 
+      * The ``n``-by-``n`` complex-rational Hermitian matrices embedded
+        in the space of ``2n``-by-``2n`` real symmetric matrices.
+
+      * The ``n``-by-``n`` quaternion-rational Hermitian matrices embedded
+        in the space of ``4n``-by-``4n`` real symmetric matrices.
+
     Later this might be extended to return Cartesian products of the
     EJAs above.
 
@@ -624,11 +1908,17 @@ def random_eja():
         Euclidean Jordan algebra of degree...
 
     """
-    n = ZZ.random_element(1,5).abs()
-    constructor = choice([eja_rn,
-                          JordanSpinSimpleEJA,
-                          RealSymmetricSimpleEJA,
-                          ComplexHermitianSimpleEJA])
+
+    # The max_n component lets us choose different upper bounds on the
+    # value "n" that gets passed to the constructor. This is needed
+    # because e.g. R^{10} is reasonable to test, while the Hermitian
+    # 10-by-10 quaternion matrices are not.
+    (constructor, max_n) = choice([(RealCartesianProductEJA, 6),
+                                   (JordanSpinEJA, 6),
+                                   (RealSymmetricEJA, 5),
+                                   (ComplexHermitianEJA, 4),
+                                   (QuaternionHermitianEJA, 3)])
+    n = ZZ.random_element(1, max_n)
     return constructor(n, field=QQ)
 
 
@@ -649,7 +1939,7 @@ def _real_symmetric_basis(n, field=QQ):
                 # Beware, orthogonal but not normalized!
                 Sij = Eij + Eij.transpose()
             S.append(Sij)
-    return S
+    return tuple(S)
 
 
 def _complex_hermitian_basis(n, field=QQ):
@@ -659,7 +1949,7 @@ def _complex_hermitian_basis(n, field=QQ):
     TESTS::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
+        sage: n = ZZ.random_element(1,5)
         sage: all( M.is_symmetric() for M in _complex_hermitian_basis(n) )
         True
 
@@ -686,8 +1976,56 @@ def _complex_hermitian_basis(n, field=QQ):
                 S.append(Sij_real)
                 Sij_imag = _embed_complex_matrix(I*Eij - I*Eij.transpose())
                 S.append(Sij_imag)
-    return S
+    return tuple(S)
+
+
+def _quaternion_hermitian_basis(n, field=QQ):
+    """
+    Returns a basis for the space of quaternion Hermitian n-by-n matrices.
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: all( M.is_symmetric() for M in _quaternion_hermitian_basis(n) )
+        True
+
+    """
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    I,J,K = Q.gens()
+
+    # This is like the symmetric case, but we need to be careful:
+    #
+    #   * We want conjugate-symmetry, not just symmetry.
+    #   * The diagonal will (as a result) be real.
+    #
+    S = []
+    for i in xrange(n):
+        for j in xrange(i+1):
+            Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+            if i == j:
+                Sij = _embed_quaternion_matrix(Eij)
+                S.append(Sij)
+            else:
+                # Beware, orthogonal but not normalized! The second,
+                # third, and fourth ones have a minus because they're
+                # conjugated.
+                Sij_real = _embed_quaternion_matrix(Eij + Eij.transpose())
+                S.append(Sij_real)
+                Sij_I = _embed_quaternion_matrix(I*Eij - I*Eij.transpose())
+                S.append(Sij_I)
+                Sij_J = _embed_quaternion_matrix(J*Eij - J*Eij.transpose())
+                S.append(Sij_J)
+                Sij_K = _embed_quaternion_matrix(K*Eij - K*Eij.transpose())
+                S.append(Sij_K)
+    return tuple(S)
+
 
+def _mat2vec(m):
+        return vector(m.base_ring(), m.list())
+
+def _vec2mat(v):
+        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
 
 def _multiplication_table_from_matrix_basis(basis):
     """
@@ -696,7 +2034,10 @@ def _multiplication_table_from_matrix_basis(basis):
     multiplication on the right is matrix multiplication. Given a basis
     for the underlying matrix space, this function returns a
     multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices.
+    elements) for an algebra of those matrices. A reordered copy
+    of the basis is also returned to work around the fact that
+    the ``span()`` in this function will change the order of the basis
+    from what we think it is, to... something else.
     """
     # In S^2, for example, we nominally have four coordinates even
     # though the space is of dimension three only. The vector space V
@@ -706,19 +2047,13 @@ def _multiplication_table_from_matrix_basis(basis):
     field = basis[0].base_ring()
     dimension = basis[0].nrows()
 
-    def mat2vec(m):
-        return vector(field, m.list())
-
-    def vec2mat(v):
-        return matrix(field, dimension, v.list())
-
     V = VectorSpace(field, dimension**2)
-    W = V.span( mat2vec(s) for s in basis )
+    W = V.span( _mat2vec(s) for s in basis )
 
     # Taking the span above reorders our basis (thanks, jerk!) so we
     # need to put our "matrix basis" in the same order as the
     # (reordered) vector basis.
-    S = [ vec2mat(b) for b in W.basis() ]
+    S = tuple( _vec2mat(b) for b in W.basis() )
 
     Qs = []
     for s in S:
@@ -731,12 +2066,12 @@ def _multiplication_table_from_matrix_basis(basis):
         # why we're computing rows here and not columns.
         Q_rows = []
         for t in S:
-            this_row = mat2vec((s*t + t*s)/2)
+            this_row = _mat2vec((s*t + t*s)/2)
             Q_rows.append(W.coordinates(this_row))
         Q = matrix(field, W.dimension(), Q_rows)
         Qs.append(Q)
 
-    return Qs
+    return (Qs, S)
 
 
 def _embed_complex_matrix(M):
@@ -752,24 +2087,38 @@ def _embed_complex_matrix(M):
         sage: x2 = F(1 + 2*i)
         sage: x3 = F(-i)
         sage: x4 = F(6)
-        sage: M = matrix(F,2,[x1,x2,x3,x4])
+        sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
         sage: _embed_complex_matrix(M)
-        [ 4  2| 1 -2]
-        [-2  4| 2  1]
+        [ 4 -2| 1  2]
+        [ 2  4|-2  1]
         [-----+-----]
-        [ 0  1| 6  0]
-        [-1  0| 0  6]
+        [ 0 -1| 6  0]
+        [ 1  0| 0  6]
+
+    TESTS:
+
+    Embedding is a homomorphism (isomorphism, in fact)::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(5)
+        sage: F = QuadraticField(-1, 'i')
+        sage: X = random_matrix(F, n)
+        sage: Y = random_matrix(F, n)
+        sage: actual = _embed_complex_matrix(X) * _embed_complex_matrix(Y)
+        sage: expected = _embed_complex_matrix(X*Y)
+        sage: actual == expected
+        True
 
     """
     n = M.nrows()
     if M.ncols() != n:
-        raise ArgumentError("the matrix 'M' must be square")
+        raise ValueError("the matrix 'M' must be square")
     field = M.base_ring()
     blocks = []
     for z in M.list():
         a = z.real()
         b = z.imag()
-        blocks.append(matrix(field, 2, [[a,-b],[b,a]]))
+        blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
 
     # We can drop the imaginaries here.
     return block_matrix(field.base_ring(), n, blocks)
@@ -786,14 +2135,25 @@ def _unembed_complex_matrix(M):
         ....:                 [ 9,  10, 11, 12],
         ....:                 [-10, 9, -12, 11] ])
         sage: _unembed_complex_matrix(A)
-        [  -2*i + 1   -4*i + 3]
-        [ -10*i + 9 -12*i + 11]
+        [  2*i + 1   4*i + 3]
+        [ 10*i + 9 12*i + 11]
+
+    TESTS:
+
+    Unembedding is the inverse of embedding::
+
+        sage: set_random_seed()
+        sage: F = QuadraticField(-1, 'i')
+        sage: M = random_matrix(F, 3)
+        sage: _unembed_complex_matrix(_embed_complex_matrix(M)) == M
+        True
+
     """
     n = ZZ(M.nrows())
     if M.ncols() != n:
-        raise ArgumentError("the matrix 'M' must be square")
+        raise ValueError("the matrix 'M' must be square")
     if not n.mod(2).is_zero():
-        raise ArgumentError("the matrix 'M' must be a complex embedding")
+        raise ValueError("the matrix 'M' must be a complex embedding")
 
     F = QuadraticField(-1, 'i')
     i = F.gen()
@@ -805,16 +2165,137 @@ def _unembed_complex_matrix(M):
         for j in xrange(n/2):
             submat = M[2*k:2*k+2,2*j:2*j+2]
             if submat[0,0] != submat[1,1]:
-                raise ArgumentError('bad real submatrix')
+                raise ValueError('bad on-diagonal submatrix')
             if submat[0,1] != -submat[1,0]:
-                raise ArgumentError('bad imag submatrix')
-            z = submat[0,0] + submat[1,0]*i
+                raise ValueError('bad off-diagonal submatrix')
+            z = submat[0,0] + submat[0,1]*i
             elements.append(z)
 
     return matrix(F, n/2, elements)
 
 
-def RealSymmetricSimpleEJA(n, field=QQ):
+def _embed_quaternion_matrix(M):
+    """
+    Embed the n-by-n quaternion matrix ``M`` into the space of real
+    matrices of size 4n-by-4n by first sending each quaternion entry
+    `z = a + bi + cj + dk` to the block-complex matrix
+    ``[[a + bi, c+di],[-c + di, a-bi]]`, and then embedding those into
+    a real matrix.
+
+    EXAMPLES::
+
+        sage: Q = QuaternionAlgebra(QQ,-1,-1)
+        sage: i,j,k = Q.gens()
+        sage: x = 1 + 2*i + 3*j + 4*k
+        sage: M = matrix(Q, 1, [[x]])
+        sage: _embed_quaternion_matrix(M)
+        [ 1  2  3  4]
+        [-2  1 -4  3]
+        [-3  4  1 -2]
+        [-4 -3  2  1]
+
+    Embedding is a homomorphism (isomorphism, in fact)::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(5)
+        sage: Q = QuaternionAlgebra(QQ,-1,-1)
+        sage: X = random_matrix(Q, n)
+        sage: Y = random_matrix(Q, n)
+        sage: actual = _embed_quaternion_matrix(X)*_embed_quaternion_matrix(Y)
+        sage: expected = _embed_quaternion_matrix(X*Y)
+        sage: actual == expected
+        True
+
+    """
+    quaternions = M.base_ring()
+    n = M.nrows()
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+
+    F = QuadraticField(-1, 'i')
+    i = F.gen()
+
+    blocks = []
+    for z in M.list():
+        t = z.coefficient_tuple()
+        a = t[0]
+        b = t[1]
+        c = t[2]
+        d = t[3]
+        cplx_matrix = matrix(F, 2, [[ a + b*i, c + d*i],
+                                    [-c + d*i, a - b*i]])
+        blocks.append(_embed_complex_matrix(cplx_matrix))
+
+    # We should have real entries by now, so use the realest field
+    # we've got for the return value.
+    return block_matrix(quaternions.base_ring(), n, blocks)
+
+
+def _unembed_quaternion_matrix(M):
+    """
+    The inverse of _embed_quaternion_matrix().
+
+    EXAMPLES::
+
+        sage: M = matrix(QQ, [[ 1,  2,  3,  4],
+        ....:                 [-2,  1, -4,  3],
+        ....:                 [-3,  4,  1, -2],
+        ....:                 [-4, -3,  2,  1]])
+        sage: _unembed_quaternion_matrix(M)
+        [1 + 2*i + 3*j + 4*k]
+
+    TESTS:
+
+    Unembedding is the inverse of embedding::
+
+        sage: set_random_seed()
+        sage: Q = QuaternionAlgebra(QQ, -1, -1)
+        sage: M = random_matrix(Q, 3)
+        sage: _unembed_quaternion_matrix(_embed_quaternion_matrix(M)) == M
+        True
+
+    """
+    n = ZZ(M.nrows())
+    if M.ncols() != n:
+        raise ValueError("the matrix 'M' must be square")
+    if not n.mod(4).is_zero():
+        raise ValueError("the matrix 'M' must be a complex embedding")
+
+    Q = QuaternionAlgebra(QQ,-1,-1)
+    i,j,k = Q.gens()
+
+    # Go top-left to bottom-right (reading order), converting every
+    # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
+    # quaternion block.
+    elements = []
+    for l in xrange(n/4):
+        for m in xrange(n/4):
+            submat = _unembed_complex_matrix(M[4*l:4*l+4,4*m:4*m+4])
+            if submat[0,0] != submat[1,1].conjugate():
+                raise ValueError('bad on-diagonal submatrix')
+            if submat[0,1] != -submat[1,0].conjugate():
+                raise ValueError('bad off-diagonal submatrix')
+            z  = submat[0,0].real() + submat[0,0].imag()*i
+            z += submat[0,1].real()*j + submat[0,1].imag()*k
+            elements.append(z)
+
+    return matrix(Q, n/4, elements)
+
+
+# The usual inner product on R^n.
+def _usual_ip(x,y):
+    return x.vector().inner_product(y.vector())
+
+# The inner product used for the real symmetric simple EJA.
+# We keep it as a separate function because e.g. the complex
+# algebra uses the same inner product, except divided by 2.
+def _matrix_ip(X,Y):
+    X_mat = X.natural_representation()
+    Y_mat = Y.natural_representation()
+    return (X_mat*Y_mat).trace()
+
+
+class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -822,7 +2303,7 @@ def RealSymmetricSimpleEJA(n, field=QQ):
 
     EXAMPLES::
 
-        sage: J = RealSymmetricSimpleEJA(2)
+        sage: J = RealSymmetricEJA(2)
         sage: e0, e1, e2 = J.gens()
         sage: e0*e0
         e0
@@ -836,19 +2317,45 @@ def RealSymmetricSimpleEJA(n, field=QQ):
     The degree of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
-        sage: J = RealSymmetricSimpleEJA(n)
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
         sage: J.degree() == (n^2 + n)/2
         True
 
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = RealSymmetricEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
+
     """
-    S = _real_symmetric_basis(n, field=field)
-    Qs = _multiplication_table_from_matrix_basis(S)
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _real_symmetric_basis(n, field=field)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
 
-    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=n)
+        fdeja = super(RealSymmetricEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
 
+    def inner_product(self, x, y):
+        return _matrix_ip(x,y)
 
-def ComplexHermitianSimpleEJA(n, field=QQ):
+
+class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -860,34 +2367,111 @@ def ComplexHermitianSimpleEJA(n, field=QQ):
     The degree of this algebra is `n^2`::
 
         sage: set_random_seed()
-        sage: n = ZZ.random_element(1,5).abs()
-        sage: J = ComplexHermitianSimpleEJA(n)
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianEJA(n)
         sage: J.degree() == n^2
         True
 
-    """
-    S = _complex_hermitian_basis(n)
-    Qs = _multiplication_table_from_matrix_basis(S)
-    return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=n)
+    The Jordan multiplication is what we think it is::
 
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = ComplexHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
 
-def QuaternionHermitianSimpleEJA(n):
+    """
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _complex_hermitian_basis(n)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(ComplexHermitianEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        # Since a+bi on the diagonal is represented as
+        #
+        #   a + bi  = [  a  b  ]
+        #             [ -b  a  ],
+        #
+        # we'll double-count the "a" entries if we take the trace of
+        # the embedding.
+        return _matrix_ip(x,y)/2
+
+
+class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
     real-part-of-trace inner product. It has dimension `2n^2 - n` over
     the reals.
-    """
-    pass
 
-def OctonionHermitianSimpleEJA(n):
-    """
-    This shit be crazy. It has dimension 27 over the reals.
-    """
-    n = 3
-    pass
+    TESTS:
+
+    The degree of this algebra is `n^2`::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: J.degree() == 2*(n^2) - n
+        True
+
+    The Jordan multiplication is what we think it is::
+
+        sage: set_random_seed()
+        sage: n = ZZ.random_element(1,5)
+        sage: J = QuaternionHermitianEJA(n)
+        sage: x = J.random_element()
+        sage: y = J.random_element()
+        sage: actual = (x*y).natural_representation()
+        sage: X = x.natural_representation()
+        sage: Y = y.natural_representation()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
 
-def JordanSpinSimpleEJA(n, field=QQ):
+    """
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        S = _quaternion_hermitian_basis(n)
+        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(QuaternionHermitianEJA, cls)
+        return fdeja.__classcall_private__(cls,
+                                           field,
+                                           Qs,
+                                           rank=n,
+                                           natural_basis=T)
+
+    def inner_product(self, x, y):
+        # Since a+bi+cj+dk on the diagonal is represented as
+        #
+        #   a + bi +cj + dk = [  a  b  c  d]
+        #                     [ -b  a -d  c]
+        #                     [ -c  d  a -b]
+        #                     [ -d -c  b  a],
+        #
+        # we'll quadruple-count the "a" entries if we take the trace of
+        # the embedding.
+        return _matrix_ip(x,y)/4
+
+
+class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the usual inner product and jordan product ``x*y =
@@ -898,7 +2482,7 @@ def JordanSpinSimpleEJA(n, field=QQ):
 
     This multiplication table can be verified by hand::
 
-        sage: J = JordanSpinSimpleEJA(4)
+        sage: J = JordanSpinEJA(4)
         sage: e0,e1,e2,e3 = J.gens()
         sage: e0*e0
         e0
@@ -915,28 +2499,27 @@ def JordanSpinSimpleEJA(n, field=QQ):
         sage: e2*e3
         0
 
-    In one dimension, this is the reals under multiplication::
-
-      sage: J1 = JordanSpinSimpleEJA(1)
-      sage: J2 = eja_rn(1)
-      sage: J1 == J2
-      True
-
     """
-    Qs = []
-    id_matrix = identity_matrix(field, n)
-    for i in xrange(n):
-        ei = id_matrix.column(i)
-        Qi = zero_matrix(field, n)
-        Qi.set_row(0, ei)
-        Qi.set_column(0, ei)
-        Qi += diagonal_matrix(n, [ei[0]]*n)
-        # The addition of the diagonal matrix adds an extra ei[0] in the
-        # upper-left corner of the matrix.
-        Qi[0,0] = Qi[0,0] * ~field(2)
-        Qs.append(Qi)
-
-    # The rank of the spin factor algebra is two, UNLESS we're in a
-    # one-dimensional ambient space (the rank is bounded by the
-    # ambient dimension).
-    return FiniteDimensionalEuclideanJordanAlgebra(field, Qs, rank=min(n,2))
+    @staticmethod
+    def __classcall_private__(cls, n, field=QQ):
+        Qs = []
+        id_matrix = identity_matrix(field, n)
+        for i in xrange(n):
+            ei = id_matrix.column(i)
+            Qi = zero_matrix(field, n)
+            Qi.set_row(0, ei)
+            Qi.set_column(0, ei)
+            Qi += diagonal_matrix(n, [ei[0]]*n)
+            # The addition of the diagonal matrix adds an extra ei[0] in the
+            # upper-left corner of the matrix.
+            Qi[0,0] = Qi[0,0] * ~field(2)
+            Qs.append(Qi)
+
+        # The rank of the spin algebra is two, unless we're in a
+        # one-dimensional ambient space (because the rank is bounded by
+        # the ambient dimension).
+        fdeja = super(JordanSpinEJA, cls)
+        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+
+    def inner_product(self, x, y):
+        return _usual_ip(x,y)