]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/euclidean_jordan_algebra.py
eja: add subalgebra_generated_by() method.
[sage.d.git] / mjo / eja / euclidean_jordan_algebra.py
index 7611fe7eef371058bd201dc5888fa63eb58881bd..097233fdad86dea01e11483d7b7525f0ab816f2a 100644 (file)
@@ -5,7 +5,147 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-from sage.all import *
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
+
+class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
+    @staticmethod
+    def __classcall__(cls, field, mult_table, names='e', category=None):
+        fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
+        return fda.__classcall_private__(cls,
+                                         field,
+                                         mult_table,
+                                         names,
+                                         category)
+
+    def __init__(self, field, mult_table, names='e', category=None):
+        fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
+        fda.__init__(field, mult_table, names, category)
+
+
+    def _repr_(self):
+        """
+        Return a string representation of ``self``.
+        """
+        return "Euclidean Jordan algebra of degree {} over {}".format(self.degree(), self.base_ring())
+
+    def rank(self):
+        """
+        Return the rank of this EJA.
+        """
+        raise NotImplementedError
+
+
+    class Element(FiniteDimensionalAlgebraElement):
+        """
+        An element of a Euclidean Jordan algebra.
+
+        Since EJAs are commutative, the "right multiplication" matrix is
+        also the left multiplication matrix and must be symmetric::
+
+            sage: set_random_seed()
+            sage: J = eja_ln(5)
+            sage: J.random_element().matrix().is_symmetric()
+            True
+
+        """
+
+        def __pow__(self, n):
+            """
+            Return ``self`` raised to the power ``n``.
+
+            Jordan algebras are always power-associative; see for
+            example Faraut and Koranyi, Proposition II.1.2 (ii).
+            """
+            A = self.parent()
+            if n == 0:
+                return A.one()
+            elif n == 1:
+                return self
+            else:
+                return A.element_class(A, self.vector()*(self.matrix()**(n-1)))
+
+
+        def span_of_powers(self):
+            """
+            Return the vector space spanned by successive powers of
+            this element.
+            """
+            # The dimension of the subalgebra can't be greater than
+            # the big algebra, so just put everything into a list
+            # and let span() get rid of the excess.
+            V = self.vector().parent()
+            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+
+
+        def degree(self):
+            """
+            Compute the degree of this element the straightforward way
+            according to the definition; by appending powers to a list
+            and figuring out its dimension (that is, whether or not
+            they're linearly dependent).
+
+            EXAMPLES::
+
+                sage: J = eja_ln(4)
+                sage: J.one().degree()
+                1
+                sage: e0,e1,e2,e3 = J.gens()
+                sage: (e0 - e1).degree()
+                2
+
+            In the spin factor algebra (of rank two), all elements that
+            aren't multiples of the identity are regular::
+
+                sage: set_random_seed()
+                sage: n = ZZ.random_element(1,10).abs()
+                sage: J = eja_ln(n)
+                sage: x = J.random_element()
+                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+                True
+
+            """
+            return self.span_of_powers().dimension()
+
+
+        def subalgebra_generated_by(self):
+            """
+            Return the subalgebra of the parent EJA generated by this element.
+            """
+            # First get the subspace spanned by the powers of myself...
+            V = self.span_of_powers()
+            F = self.base_ring()
+
+            # Now figure out the entries of the right-multiplication
+            # matrix for the successive basis elements b0, b1,... of
+            # that subspace.
+            mats = []
+            for b_right in V.basis():
+                eja_b_right = self.parent()(b_right)
+                b_right_rows = []
+                # The first row of the right-multiplication matrix by
+                # b1 is what we get if we apply that matrix to b1. The
+                # second row of the right multiplication matrix by b1
+                # is what we get when we apply that matrix to b2...
+                for b_left in V.basis():
+                    eja_b_left = self.parent()(b_left)
+                    # Multiply in the original EJA, but then get the
+                    # coordinates from the subalgebra in terms of its
+                    # basis.
+                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+                    b_right_rows.append(this_row)
+                b_right_matrix = matrix(F, b_right_rows)
+                mats.append(b_right_matrix)
+
+            return FiniteDimensionalEuclideanJordanAlgebra(F, mats)
+
+
+        def minimal_polynomial(self):
+            return self.matrix().minimal_polynomial()
+
+        def characteristic_polynomial(self):
+            return self.matrix().characteristic_polynomial()
+
 
 def eja_rn(dimension, field=QQ):
     """
@@ -39,13 +179,13 @@ def eja_rn(dimension, field=QQ):
     # component of x; and likewise for the ith basis element e_i.
     Qs = [ matrix(field, dimension, dimension, lambda k,j: 1*(k == j == i))
            for i in xrange(dimension) ]
-    A = FiniteDimensionalAlgebra(QQ,Qs,assume_associative=True)
-    return JordanAlgebra(A)
+
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)
 
 
 def eja_ln(dimension, field=QQ):
     """
-    Return the Jordan algebra corresponding to the Lorenzt "ice cream"
+    Return the Jordan algebra corresponding to the Lorentz "ice cream"
     cone of the given ``dimension``.
 
     EXAMPLES:
@@ -90,5 +230,4 @@ def eja_ln(dimension, field=QQ):
         Qi[0,0] = Qi[0,0] * ~field(2)
         Qs.append(Qi)
 
-    A = FiniteDimensionalAlgebra(QQ,Qs,assume_associative=True)
-    return JordanAlgebra(A)
+    return FiniteDimensionalEuclideanJordanAlgebra(field,Qs)