]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: add a WIP gram-schmidt for EJA elements.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index a3ad92a4f9f5acedc7a12c6c11971f0d9351c3a3..fee718b14ff32d96a00e7b8c9f1e8ed09066d733 100644 (file)
@@ -2,7 +2,7 @@ from sage.matrix.constructor import matrix
 
 from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-
+from mjo.eja.eja_utils import gram_schmidt
 
 class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
     """
@@ -71,43 +71,111 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The subalgebra of an EJA generated by a single element.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+        ....:                                  JordanSpinEJA)
+
+    TESTS:
+
+    Ensure that our generator names don't conflict with the superalgebra::
+
+        sage: J = JordanSpinEJA(3)
+        sage: J.one().subalgebra_generated_by().gens()
+        (f0,)
+        sage: J = JordanSpinEJA(3, prefix='f')
+        sage: J.one().subalgebra_generated_by().gens()
+        (g0,)
+        sage: J = JordanSpinEJA(3, prefix='b')
+        sage: J.one().subalgebra_generated_by().gens()
+        (c0,)
+
+    Ensure that we can find subalgebras of subalgebras::
+
+        sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
+        sage: B = A.one().subalgebra_generated_by()
+        sage: B.dimension()
+        1
+
     """
-    def __init__(self, elt):
-        superalgebra = elt.parent()
-
-        # First compute the vector subspace spanned by the powers of
-        # the given element.
-        V = superalgebra.vector_space()
-        superalgebra_basis = [superalgebra.one()]
-        basis_vectors = [superalgebra.one().to_vector()]
-        W = V.span_of_basis(basis_vectors)
-        for exponent in range(1, V.dimension()):
-            new_power = elt**exponent
-            basis_vectors.append( new_power.to_vector() )
-            try:
-                W = V.span_of_basis(basis_vectors)
-                superalgebra_basis.append( new_power )
-            except ValueError:
-                # Vectors weren't independent; bail and keep the
-                # last subspace that worked.
-                break
-
-        # Make the basis hashable for UniqueRepresentation.
-        superalgebra_basis = tuple(superalgebra_basis)
-
-        # Now figure out the entries of the right-multiplication
-        # matrix for the successive basis elements b0, b1,... of
-        # that subspace.
-        field = superalgebra.base_ring()
+    def __init__(self, elt, orthonormalize_basis):
+        self._superalgebra = elt.parent()
+        category = self._superalgebra.category().Associative()
+        V = self._superalgebra.vector_space()
+        field = self._superalgebra.base_ring()
+
+        # A half-assed attempt to ensure that we don't collide with
+        # the superalgebra's prefix (ignoring the fact that there
+        # could be super-superelgrbas in scope). If possible, we
+        # try to "increment" the parent algebra's prefix, although
+        # this idea goes out the window fast because some prefixen
+        # are off-limits.
+        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
+        try:
+            prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
+        except ValueError:
+            prefix = prefixen[0]
+
+        if elt.is_zero():
+            # Short circuit because 0^0 == 1 is going to make us
+            # think we have a one-dimensional algebra otherwise.
+            natural_basis = tuple()
+            mult_table = tuple()
+            rank = 0
+            self._vector_space = V.zero_subspace()
+            self._superalgebra_basis = []
+            fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra,
+                          self)
+            return fdeja.__init__(field,
+                                  mult_table,
+                                  rank,
+                                  prefix=prefix,
+                                  category=category,
+                                  natural_basis=natural_basis)
+
+
+        # This list is guaranteed to contain all independent powers,
+        # because it's the maximal set of powers that could possibly
+        # be independent (by a dimension argument).
+        powers = [ elt**k for k in range(V.dimension()) ]
+
+        if orthonormalize_basis == False:
+            # In this case, we just need to figure out which elements
+            # of the "powers" list are redundant... First compute the
+            # vector subspace spanned by the powers of the given
+            # element.
+            power_vectors = [ p.to_vector() for p in powers ]
+
+            # Figure out which powers form a linearly-independent set.
+            ind_rows = matrix(field, power_vectors).pivot_rows()
+
+            # Pick those out of the list of all powers.
+            superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
+
+            # If our superalgebra is a subalgebra of something else, then
+            # these vectors won't have the right coordinates for
+            # V.span_of_basis() unless we use V.from_vector() on them.
+            basis_vectors = map(power_vectors.__getitem__, ind_rows)
+        else:
+            # If we're going to orthonormalize the basis anyway, we
+            # might as well just do Gram-Schmidt on the whole list of
+            # powers. The redundant ones will get zero'd out.
+            superalgebra_basis = gram_schmidt(powers)
+            basis_vectors = [ b.to_vector() for b in superalgebra_basis ]
+
+        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
         n = len(superalgebra_basis)
         mult_table = [[W.zero() for i in range(n)] for j in range(n)]
         for i in range(n):
             for j in range(n):
                 product = superalgebra_basis[i]*superalgebra_basis[j]
-                mult_table[i][j] = W.coordinate_vector(product.to_vector())
-
-        # TODO: We'll have to redo this and make it unique again...
-        prefix = 'f'
+                # product.to_vector() might live in a vector subspace
+                # if our parent algebra is already a subalgebra. We
+                # use V.from_vector() to make it "the right size" in
+                # that case.
+                product_vector = V.from_vector(product.to_vector())
+                mult_table[i][j] = W.coordinate_vector(product_vector)
 
         # The rank is the highest possible degree of a minimal
         # polynomial, and is bounded above by the dimension. We know
@@ -117,11 +185,10 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         # its rank too.
         rank = W.dimension()
 
-        category = superalgebra.category().Associative()
         natural_basis = tuple( b.natural_representation()
                                for b in superalgebra_basis )
 
-        self._superalgebra = superalgebra
+
         self._vector_space = W
         self._superalgebra_basis = superalgebra_basis
 
@@ -135,6 +202,30 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                               natural_basis=natural_basis)
 
 
+    def _a_regular_element(self):
+        """
+        Override the superalgebra method to return the one
+        regular element that is sure to exist in this
+        subalgebra, namely the element that generated it.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja().random_element().subalgebra_generated_by()
+            sage: J._a_regular_element().is_regular()
+            True
+
+        """
+        if self.dimension() == 0:
+            return self.zero()
+        else:
+            return self.monomial(1)
+
+
     def _element_constructor_(self, elt):
         """
         Construct an element of this subalgebra from the given one.
@@ -221,7 +312,22 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
             sage: actual == expected
             True
         """
-        return self.monomial(self.one_basis())
+        if self.dimension() == 0:
+            return self.zero()
+        else:
+            return self.monomial(self.one_basis())
+
+
+    def natural_basis_space(self):
+        """
+        Return the natural basis space of this algebra, which is identical
+        to that of its superalgebra.
+
+        This is correct "by definition," and avoids a mismatch when the
+        subalgebra is trivial (with no natural basis to infer anything
+        from) and the parent is not.
+        """
+        return self.superalgebra().natural_basis_space()
 
 
     def superalgebra(self):
@@ -241,20 +347,20 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
+            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
             sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over Rational Field
+            Vector space of degree 6 and dimension 3 over...
             User basis matrix:
             [ 1  0  1  0  0  1]
-            [ 0  1  2  3  4  5]
-            [10 14 21 19 31 50]
+            [ 1  0  2  0  0  5]
+            [ 1  0  4  0  0 25]
             sage: (x^0).to_vector()
             (1, 0, 1, 0, 0, 1)
             sage: (x^1).to_vector()
-            (0, 1, 2, 3, 4, 5)
+            (1, 0, 2, 0, 0, 5)
             sage: (x^2).to_vector()
-            (10, 14, 21, 19, 31, 50)
+            (1, 0, 4, 0, 0, 25)
 
         """
         return self._vector_space