]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: don't pass in a full multiplication table unless necessary.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 9326793f9dfd1a1619241c3dcd2e5bb8dcda1351..fb0f26cceaca91c1a2d7328abb26c0003dcebcee 100644 (file)
@@ -2,9 +2,8 @@ from sage.matrix.constructor import matrix
 
 from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_utils import gram_schmidt
 
-class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
     """
     SETUP::
 
@@ -12,17 +11,28 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 
     TESTS::
 
-    The natural representation of an element in the subalgebra is
-    the same as its natural representation in the superalgebra::
+    The matrix representation of an element in the subalgebra is
+    the same as its matrix representation in the superalgebra::
 
         sage: set_random_seed()
         sage: A = random_eja().random_element().subalgebra_generated_by()
         sage: y = A.random_element()
-        sage: actual = y.natural_representation()
-        sage: expected = y.superalgebra_element().natural_representation()
+        sage: actual = y.to_matrix()
+        sage: expected = y.superalgebra_element().to_matrix()
         sage: actual == expected
         True
 
+    The left-multiplication-by operator for elements in the subalgebra
+    works like it does in the superalgebra, even if we orthonormalize
+    our basis::
+
+        sage: set_random_seed()
+        sage: x = random_eja(AA).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+        sage: y = A.random_element()
+        sage: y.operator()(A.one()) == y
+        True
+
     """
 
     def superalgebra_element(self):
@@ -46,6 +56,14 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
             f1
             sage: A(x).superalgebra_element()
             e0 + e1 + e2 + e3 + e4 + e5
+            sage: y = sum(A.gens())
+            sage: y
+            f0 + f1
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y)
+            g1
+            sage: B(y).superalgebra_element()
+            f0 + f1
 
         TESTS:
 
@@ -60,22 +78,56 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
             sage: y = A.random_element()
             sage: A(y.superalgebra_element()) == y
             True
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y).superalgebra_element() == y
+            True
 
         """
-        return self.parent().superalgebra().linear_combination(
-          zip(self.parent()._superalgebra_basis, self.to_vector()) )
+        # As with the _element_constructor_() method on the
+        # algebra... even in a subspace of a subspace, the basis
+        # elements belong to the ambient space. As a result, only one
+        # level of coordinate_vector() is needed, regardless of how
+        # deeply we're nested.
+        W = self.parent().vector_space()
+        V = self.parent().superalgebra().vector_space()
+
+        # Multiply on the left because basis_matrix() is row-wise.
+        ambient_coords = self.to_vector()*W.basis_matrix()
+        V_coords = V.coordinate_vector(ambient_coords)
+        return self.parent().superalgebra().from_vector(V_coords)
 
 
 
 
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
-    The subalgebra of an EJA generated by a single element.
+    A subalgebra of an EJA with a given basis.
 
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1.one().to_matrix()
+        [1 0]
+        [0 0]
+        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2.one().to_matrix()
+        [0 0]
+        [0 1]
 
     TESTS:
 
@@ -99,11 +151,12 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         1
 
     """
-    def __init__(self, elt, orthonormalize_basis):
-        self._superalgebra = elt.parent()
-        category = self._superalgebra.category().Associative()
+    def __init__(self, superalgebra, basis, category=None, check_axioms=True):
+        self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
+        if category is None:
+            category = self._superalgebra.category()
 
         # A half-assed attempt to ensure that we don't collide with
         # the superalgebra's prefix (ignoring the fact that there
@@ -117,113 +170,52 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         except ValueError:
             prefix = prefixen[0]
 
-        if elt.is_zero():
-            # Short circuit because 0^0 == 1 is going to make us
-            # think we have a one-dimensional algebra otherwise.
-            natural_basis = tuple()
-            mult_table = tuple()
-            rank = 0
-            self._vector_space = V.zero_subspace()
-            self._superalgebra_basis = []
-            fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra,
-                          self)
-            return fdeja.__init__(field,
-                                  mult_table,
-                                  rank,
-                                  prefix=prefix,
-                                  category=category,
-                                  natural_basis=natural_basis)
-
-
-        # This list is guaranteed to contain all independent powers,
-        # because it's the maximal set of powers that could possibly
-        # be independent (by a dimension argument).
-        powers = [ elt**k for k in range(V.dimension()) ]
-
-        if orthonormalize_basis == False:
-            # In this case, we just need to figure out which elements
-            # of the "powers" list are redundant... First compute the
-            # vector subspace spanned by the powers of the given
-            # element.
-            power_vectors = [ p.to_vector() for p in powers ]
-
-            # Figure out which powers form a linearly-independent set.
-            ind_rows = matrix(field, power_vectors).pivot_rows()
-
-            # Pick those out of the list of all powers.
-            superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
-
-            # If our superalgebra is a subalgebra of something else, then
-            # these vectors won't have the right coordinates for
-            # V.span_of_basis() unless we use V.from_vector() on them.
-            basis_vectors = map(power_vectors.__getitem__, ind_rows)
+        # If our superalgebra is a subalgebra of something else, then
+        # these vectors won't have the right coordinates for
+        # V.span_of_basis() unless we use V.from_vector() on them.
+        W = V.span_of_basis( V.from_vector(b.to_vector()) for b in basis )
+
+        n = len(basis)
+        if check_axioms:
+            # The tables are square if we're verifying that they
+            # are commutative.
+            mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
+                           for j in range(n) ]
+                         for i in range(n) ]
         else:
-            # If we're going to orthonormalize the basis anyway, we
-            # might as well just do Gram-Schmidt on the whole list of
-            # powers. The redundant ones will get zero'd out.
-            superalgebra_basis = gram_schmidt(powers)
-            basis_vectors = [ b.to_vector() for b in superalgebra_basis ]
-
-        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
-        n = len(superalgebra_basis)
-        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
+            mult_table = [[W.zero() for j in range(i+1)] for i in range(n)]
+            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
+                           for j in range(i+1) ]
+                         for i in range(n) ]
+
         for i in range(n):
-            for j in range(n):
-                product = superalgebra_basis[i]*superalgebra_basis[j]
+            for j in range(i+1):
+                product = basis[i]*basis[j]
                 # product.to_vector() might live in a vector subspace
                 # if our parent algebra is already a subalgebra. We
                 # use V.from_vector() to make it "the right size" in
                 # that case.
                 product_vector = V.from_vector(product.to_vector())
                 mult_table[i][j] = W.coordinate_vector(product_vector)
+                if check_axioms:
+                    mult_table[j][i] = mult_table[i][j]
 
-        # The rank is the highest possible degree of a minimal
-        # polynomial, and is bounded above by the dimension. We know
-        # in this case that there's an element whose minimal
-        # polynomial has the same degree as the space's dimension
-        # (remember how we constructed the space?), so that must be
-        # its rank too.
-        rank = W.dimension()
-
-        natural_basis = tuple( b.natural_representation()
-                               for b in superalgebra_basis )
+        matrix_basis = tuple( b.to_matrix() for b in basis )
 
 
         self._vector_space = W
-        self._superalgebra_basis = superalgebra_basis
-
-
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
-        return fdeja.__init__(field,
-                              mult_table,
-                              rank,
-                              prefix=prefix,
-                              category=category,
-                              natural_basis=natural_basis)
-
-
-    def _a_regular_element(self):
-        """
-        Override the superalgebra method to return the one
-        regular element that is sure to exist in this
-        subalgebra, namely the element that generated it.
 
-        SETUP::
+        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
+        fdeja.__init__(field,
+                       mult_table,
+                       ip_table,
+                       prefix=prefix,
+                       category=category,
+                       matrix_basis=matrix_basis,
+                       check_field=False,
+                       check_axioms=check_axioms)
 
-            sage: from mjo.eja.eja_algebra import random_eja
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: J._a_regular_element().is_regular()
-            True
-
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(1)
 
 
     def _element_constructor_(self, elt):
@@ -235,99 +227,55 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K(J.one())
+            f1
+            sage: K(J.one() + x)
+            f0 + f1
 
         ::
 
         """
-        if elt == 0:
-            # Just as in the superalgebra class, we need to hack
-            # this special case to ensure that random_element() can
-            # coerce a ring zero into the algebra.
-            return self.zero()
+        if elt not in self.superalgebra():
+            raise ValueError("not an element of this subalgebra")
 
-        if elt in self.superalgebra():
-            coords = self.vector_space().coordinate_vector(elt.to_vector())
-            return self.from_vector(coords)
+        # The extra hackery is because foo.to_vector() might not live
+        # in foo.parent().vector_space()! Subspaces of subspaces still
+        # have user bases in the ambient space, though, so only one
+        # level of coordinate_vector() is needed. In other words, if V
+        # is itself a subspace, the basis elements for W will be of
+        # the same length as the basis elements for V -- namely
+        # whatever the dimension of the ambient (parent of V?) space is.
+        V = self.superalgebra().vector_space()
+        W = self.vector_space()
 
+        # Multiply on the left because basis_matrix() is row-wise.
+        ambient_coords = elt.to_vector()*V.basis_matrix()
+        W_coords = W.coordinate_vector(ambient_coords)
+        return self.from_vector(W_coords)
 
-    def one_basis(self):
-        """
-        Return the basis-element-index of this algebra's unit element.
-        """
-        return 0
-
-
-    def one(self):
-        """
-        Return the multiplicative identity element of this algebra.
-
-        The superclass method computes the identity element, which is
-        beyond overkill in this case: the algebra identity should be our
-        first basis element. We implement this via :meth:`one_basis`
-        because that method can optionally be used by other parts of the
-        category framework.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-            ....:                                  random_eja)
-
-        EXAMPLES::
-
-            sage: J = RealCartesianProductEJA(5)
-            sage: J.one()
-            e0 + e1 + e2 + e3 + e4
-            sage: x = sum(J.gens())
-            sage: A = x.subalgebra_generated_by()
-            sage: A.one()
-            f0
-            sage: A.one().superalgebra_element()
-            e0 + e1 + e2 + e3 + e4
-
-        TESTS:
-
-        The identity element acts like the identity::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: x = J.random_element()
-            sage: J.one()*x == x and x*J.one() == x
-            True
-
-        The matrix of the unit element's operator is the identity::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: actual = J.one().operator().matrix()
-            sage: expected = matrix.identity(J.base_ring(), J.dimension())
-            sage: actual == expected
-            True
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(self.one_basis())
 
 
-    def natural_basis_space(self):
+    def matrix_space(self):
         """
-        Return the natural basis space of this algebra, which is identical
-        to that of its superalgebra.
+        Return the matrix space of this algebra, which is identical to
+        that of its superalgebra.
 
-        This is correct "by definition," and avoids a mismatch when the
-        subalgebra is trivial (with no natural basis to infer anything
-        from) and the parent is not.
+        This is correct "by definition," and avoids a mismatch when
+        the subalgebra is trivial (with no matrix basis elements to
+        infer anything from) and the parent is not.
         """
-        return self.superalgebra().natural_basis_space()
+        return self.superalgebra().matrix_space()
 
 
     def superalgebra(self):
@@ -342,28 +290,33 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
+            sage: E11 = matrix(ZZ, [ [1,0,0],
+            ....:                    [0,0,0],
+            ....:                    [0,0,0] ])
+            sage: E22 = matrix(ZZ, [ [0,0,0],
+            ....:                    [0,1,0],
+            ....:                    [0,0,0] ])
+            sage: b1 = J(E11)
+            sage: b2 = J(E22)
+            sage: basis = (b1, b2)
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over...
+            Vector space of degree 6 and dimension 2 over...
             User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 1  0  2  0  0  5]
-            [ 1  0  4  0  0 25]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (1, 0, 2, 0, 0, 5)
-            sage: (x^2).to_vector()
-            (1, 0, 4, 0, 0, 25)
+            [1 0 0 0 0 0]
+            [0 0 1 0 0 0]
+            sage: b1.to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: b2.to_vector()
+            (0, 0, 1, 0, 0, 0)
 
         """
         return self._vector_space
 
 
-    Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement
+    Element = FiniteDimensionalEuclideanJordanSubalgebraElement