]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: move the "field" argument to (usually passed through) kwargs.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 5e782cf4a69b13d0d6c2e36beb5b190d81ddb3b4..e7308ea34b9a36aef09a84069a1289e072487ec7 100644 (file)
@@ -3,8 +3,7 @@ from sage.matrix.constructor import matrix
 from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
 
-
-class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
     """
     SETUP::
 
@@ -12,17 +11,28 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 
     TESTS::
 
-    The natural representation of an element in the subalgebra is
-    the same as its natural representation in the superalgebra::
+    The matrix representation of an element in the subalgebra is
+    the same as its matrix representation in the superalgebra::
 
         sage: set_random_seed()
         sage: A = random_eja().random_element().subalgebra_generated_by()
         sage: y = A.random_element()
-        sage: actual = y.natural_representation()
-        sage: expected = y.superalgebra_element().natural_representation()
+        sage: actual = y.to_matrix()
+        sage: expected = y.superalgebra_element().to_matrix()
         sage: actual == expected
         True
 
+    The left-multiplication-by operator for elements in the subalgebra
+    works like it does in the superalgebra, even if we orthonormalize
+    our basis::
+
+        sage: set_random_seed()
+        sage: x = random_eja(field=AA).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+        sage: y = A.random_element()
+        sage: y.operator()(A.one()) == y
+        True
+
     """
 
     def superalgebra_element(self):
@@ -46,6 +56,14 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
             f1
             sage: A(x).superalgebra_element()
             e0 + e1 + e2 + e3 + e4 + e5
+            sage: y = sum(A.gens())
+            sage: y
+            f0 + f1
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y)
+            g1
+            sage: B(y).superalgebra_element()
+            f0 + f1
 
         TESTS:
 
@@ -60,95 +78,145 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
             sage: y = A.random_element()
             sage: A(y.superalgebra_element()) == y
             True
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y).superalgebra_element() == y
+            True
 
         """
-        return self.parent().superalgebra().linear_combination(
-          zip(self.parent()._superalgebra_basis, self.to_vector()) )
+        # As with the _element_constructor_() method on the
+        # algebra... even in a subspace of a subspace, the basis
+        # elements belong to the ambient space. As a result, only one
+        # level of coordinate_vector() is needed, regardless of how
+        # deeply we're nested.
+        W = self.parent().vector_space()
+        V = self.parent().superalgebra().vector_space()
 
+        # Multiply on the left because basis_matrix() is row-wise.
+        ambient_coords = self.to_vector()*W.basis_matrix()
+        V_coords = V.coordinate_vector(ambient_coords)
+        return self.parent().superalgebra().from_vector(V_coords)
 
 
 
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
-    """
-    The subalgebra of an EJA generated by a single element.
+
+class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
-    def __init__(self, elt):
-        superalgebra = elt.parent()
-
-        # First compute the vector subspace spanned by the powers of
-        # the given element.
-        V = superalgebra.vector_space()
-        superalgebra_basis = [superalgebra.one()]
-        basis_vectors = [superalgebra.one().to_vector()]
-        W = V.span_of_basis(basis_vectors)
-        for exponent in range(1, V.dimension()):
-            new_power = elt**exponent
-            basis_vectors.append( new_power.to_vector() )
-            try:
-                W = V.span_of_basis(basis_vectors)
-                superalgebra_basis.append( new_power )
-            except ValueError:
-                # Vectors weren't independent; bail and keep the
-                # last subspace that worked.
-                break
-
-        # Make the basis hashable for UniqueRepresentation.
-        superalgebra_basis = tuple(superalgebra_basis)
-
-        # Now figure out the entries of the right-multiplication
-        # matrix for the successive basis elements b0, b1,... of
-        # that subspace.
-        field = superalgebra.base_ring()
-        mult_table = []
-        for b_right in superalgebra_basis:
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in superalgebra_basis:
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = W.coordinates((b_left*b_right).to_vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(field, b_right_rows)
-                mult_table.append(b_right_matrix)
-
-        for m in mult_table:
-            m.set_immutable()
-        mult_table = tuple(mult_table)
-
-        # TODO: We'll have to redo this and make it unique again...
-        prefix = 'f'
-
-        # The rank is the highest possible degree of a minimal
-        # polynomial, and is bounded above by the dimension. We know
-        # in this case that there's an element whose minimal
-        # polynomial has the same degree as the space's dimension
-        # (remember how we constructed the space?), so that must be
-        # its rank too.
-        rank = W.dimension()
-
-        category = superalgebra.category().Associative()
-        natural_basis = tuple( b.natural_representation()
-                               for b in superalgebra_basis )
+    A subalgebra of an EJA with a given basis.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1.one().to_matrix()
+        [1 0]
+        [0 0]
+        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2.one().to_matrix()
+        [0 0]
+        [0 1]
+
+    TESTS:
+
+    Ensure that our generator names don't conflict with the superalgebra::
+
+        sage: J = JordanSpinEJA(3)
+        sage: J.one().subalgebra_generated_by().gens()
+        (f0,)
+        sage: J = JordanSpinEJA(3, prefix='f')
+        sage: J.one().subalgebra_generated_by().gens()
+        (g0,)
+        sage: J = JordanSpinEJA(3, prefix='b')
+        sage: J.one().subalgebra_generated_by().gens()
+        (c0,)
+
+    Ensure that we can find subalgebras of subalgebras::
+
+        sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
+        sage: B = A.one().subalgebra_generated_by()
+        sage: B.dimension()
+        1
 
+    """
+    def __init__(self, superalgebra, basis, category=None, check_axioms=True):
         self._superalgebra = superalgebra
+        V = self._superalgebra.vector_space()
+        field = self._superalgebra.base_ring()
+        if category is None:
+            category = self._superalgebra.category()
+
+        # A half-assed attempt to ensure that we don't collide with
+        # the superalgebra's prefix (ignoring the fact that there
+        # could be super-superelgrbas in scope). If possible, we
+        # try to "increment" the parent algebra's prefix, although
+        # this idea goes out the window fast because some prefixen
+        # are off-limits.
+        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
+        try:
+            prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
+        except ValueError:
+            prefix = prefixen[0]
+
+        # If our superalgebra is a subalgebra of something else, then
+        # these vectors won't have the right coordinates for
+        # V.span_of_basis() unless we use V.from_vector() on them.
+        W = V.span_of_basis( (V.from_vector(b.to_vector()) for b in basis),
+                             check=check_axioms)
+
+        n = len(basis)
+        if check_axioms:
+            # The tables are square if we're verifying that they
+            # are commutative.
+            mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
+                           for j in range(n) ]
+                         for i in range(n) ]
+        else:
+            mult_table = [[W.zero() for j in range(i+1)] for i in range(n)]
+            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
+                           for j in range(i+1) ]
+                         for i in range(n) ]
+
+        for i in range(n):
+            for j in range(i+1):
+                product = basis[i]*basis[j]
+                # product.to_vector() might live in a vector subspace
+                # if our parent algebra is already a subalgebra. We
+                # use V.from_vector() to make it "the right size" in
+                # that case.
+                product_vector = V.from_vector(product.to_vector())
+                mult_table[i][j] = W.coordinate_vector(product_vector)
+                if check_axioms:
+                    mult_table[j][i] = mult_table[i][j]
+
+        matrix_basis = tuple( b.to_matrix() for b in basis )
+
+
         self._vector_space = W
-        self._superalgebra_basis = superalgebra_basis
 
+        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
+        fdeja.__init__(field,
+                       mult_table,
+                       ip_table,
+                       prefix=prefix,
+                       category=category,
+                       matrix_basis=matrix_basis,
+                       check_field=False,
+                       check_axioms=check_axioms)
 
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
-        return fdeja.__init__(field,
-                              mult_table,
-                              rank,
-                              prefix=prefix,
-                              category=category,
-                              natural_basis=natural_basis)
 
 
     def _element_constructor_(self, elt):
@@ -160,22 +228,55 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K(J.one())
+            f1
+            sage: K(J.one() + x)
+            f0 + f1
 
         ::
 
         """
-        if elt in self.superalgebra():
-            coords = self.vector_space().coordinate_vector(elt.to_vector())
-            return self.from_vector(coords)
+        if elt not in self.superalgebra():
+            raise ValueError("not an element of this subalgebra")
+
+        # The extra hackery is because foo.to_vector() might not live
+        # in foo.parent().vector_space()! Subspaces of subspaces still
+        # have user bases in the ambient space, though, so only one
+        # level of coordinate_vector() is needed. In other words, if V
+        # is itself a subspace, the basis elements for W will be of
+        # the same length as the basis elements for V -- namely
+        # whatever the dimension of the ambient (parent of V?) space is.
+        V = self.superalgebra().vector_space()
+        W = self.vector_space()
+
+        # Multiply on the left because basis_matrix() is row-wise.
+        ambient_coords = elt.to_vector()*V.basis_matrix()
+        W_coords = W.coordinate_vector(ambient_coords)
+        return self.from_vector(W_coords)
+
+
+
+    def matrix_space(self):
+        """
+        Return the matrix space of this algebra, which is identical to
+        that of its superalgebra.
+
+        This is correct "by definition," and avoids a mismatch when
+        the subalgebra is trivial (with no matrix basis elements to
+        infer anything from) and the parent is not.
+        """
+        return self.superalgebra().matrix_space()
 
 
     def superalgebra(self):
@@ -190,28 +291,33 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+            sage: E11 = matrix(ZZ, [ [1,0,0],
+            ....:                    [0,0,0],
+            ....:                    [0,0,0] ])
+            sage: E22 = matrix(ZZ, [ [0,0,0],
+            ....:                    [0,1,0],
+            ....:                    [0,0,0] ])
+            sage: b1 = J(E11)
+            sage: b2 = J(E22)
+            sage: basis = (b1, b2)
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over Rational Field
+            Vector space of degree 6 and dimension 2 over...
             User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 0  1  2  3  4  5]
-            [10 14 21 19 31 50]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (0, 1, 2, 3, 4, 5)
-            sage: (x^2).to_vector()
-            (10, 14, 21, 19, 31, 50)
+            [1 0 0 0 0 0]
+            [0 0 1 0 0 0]
+            sage: b1.to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: b2.to_vector()
+            (0, 0, 1, 0, 0, 0)
 
         """
         return self._vector_space
 
 
-    Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement
+    Element = FiniteDimensionalEuclideanJordanSubalgebraElement