]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: move the "field" argument to (usually passed through) kwargs.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 10303489f5af35bca16694b688269f50da50cdaf..e7308ea34b9a36aef09a84069a1289e072487ec7 100644 (file)
@@ -11,14 +11,14 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
 
     TESTS::
 
-    The natural representation of an element in the subalgebra is
-    the same as its natural representation in the superalgebra::
+    The matrix representation of an element in the subalgebra is
+    the same as its matrix representation in the superalgebra::
 
         sage: set_random_seed()
         sage: A = random_eja().random_element().subalgebra_generated_by()
         sage: y = A.random_element()
-        sage: actual = y.natural_representation()
-        sage: expected = y.superalgebra_element().natural_representation()
+        sage: actual = y.to_matrix()
+        sage: expected = y.superalgebra_element().to_matrix()
         sage: actual == expected
         True
 
@@ -27,7 +27,7 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
     our basis::
 
         sage: set_random_seed()
-        sage: x = random_eja(AA).random_element()
+        sage: x = random_eja(field=AA).random_element()
         sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
         sage: y = A.random_element()
         sage: y.operator()(A.one()) == y
@@ -56,6 +56,14 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
             f1
             sage: A(x).superalgebra_element()
             e0 + e1 + e2 + e3 + e4 + e5
+            sage: y = sum(A.gens())
+            sage: y
+            f0 + f1
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y)
+            g1
+            sage: B(y).superalgebra_element()
+            f0 + f1
 
         TESTS:
 
@@ -70,10 +78,23 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
             sage: y = A.random_element()
             sage: A(y.superalgebra_element()) == y
             True
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y).superalgebra_element() == y
+            True
 
         """
-        return self.parent().superalgebra().linear_combination(
-          zip(self.parent()._superalgebra_basis, self.to_vector()) )
+        # As with the _element_constructor_() method on the
+        # algebra... even in a subspace of a subspace, the basis
+        # elements belong to the ambient space. As a result, only one
+        # level of coordinate_vector() is needed, regardless of how
+        # deeply we're nested.
+        W = self.parent().vector_space()
+        V = self.parent().superalgebra().vector_space()
+
+        # Multiply on the left because basis_matrix() is row-wise.
+        ambient_coords = self.to_vector()*W.basis_matrix()
+        V_coords = V.coordinate_vector(ambient_coords)
+        return self.parent().superalgebra().from_vector(V_coords)
 
 
 
@@ -85,7 +106,28 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1.one().to_matrix()
+        [1 0]
+        [0 0]
+        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2.one().to_matrix()
+        [0 0]
+        [0 1]
 
     TESTS:
 
@@ -109,7 +151,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         1
 
     """
-    def __init__(self, superalgebra, basis, rank=None, category=None):
+    def __init__(self, superalgebra, basis, category=None, check_axioms=True):
         self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
@@ -128,38 +170,52 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         except ValueError:
             prefix = prefixen[0]
 
-        basis_vectors = [ b.to_vector() for b in basis ]
-        superalgebra_basis = [ self._superalgebra.from_vector(b)
-                               for b in basis_vectors ]
+        # If our superalgebra is a subalgebra of something else, then
+        # these vectors won't have the right coordinates for
+        # V.span_of_basis() unless we use V.from_vector() on them.
+        W = V.span_of_basis( (V.from_vector(b.to_vector()) for b in basis),
+                             check=check_axioms)
+
+        n = len(basis)
+        if check_axioms:
+            # The tables are square if we're verifying that they
+            # are commutative.
+            mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
+                           for j in range(n) ]
+                         for i in range(n) ]
+        else:
+            mult_table = [[W.zero() for j in range(i+1)] for i in range(n)]
+            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
+                           for j in range(i+1) ]
+                         for i in range(n) ]
 
-        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
-        n = len(superalgebra_basis)
-        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
         for i in range(n):
-            for j in range(n):
-                product = superalgebra_basis[i]*superalgebra_basis[j]
+            for j in range(i+1):
+                product = basis[i]*basis[j]
                 # product.to_vector() might live in a vector subspace
                 # if our parent algebra is already a subalgebra. We
                 # use V.from_vector() to make it "the right size" in
                 # that case.
                 product_vector = V.from_vector(product.to_vector())
                 mult_table[i][j] = W.coordinate_vector(product_vector)
+                if check_axioms:
+                    mult_table[j][i] = mult_table[i][j]
 
-        natural_basis = tuple( b.natural_representation()
-                               for b in superalgebra_basis )
+        matrix_basis = tuple( b.to_matrix() for b in basis )
 
 
         self._vector_space = W
-        self._superalgebra_basis = superalgebra_basis
-
 
         fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
-        return fdeja.__init__(field,
-                              mult_table,
-                              rank,
-                              prefix=prefix,
-                              category=category,
-                              natural_basis=natural_basis)
+        fdeja.__init__(field,
+                       mult_table,
+                       ip_table,
+                       prefix=prefix,
+                       category=category,
+                       matrix_basis=matrix_basis,
+                       check_field=False,
+                       check_axioms=check_axioms)
 
 
 
@@ -177,11 +233,16 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: basis = tuple( x^k for k in range(J.rank()) )
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K(J.one())
+            f1
+            sage: K(J.one() + x)
+            f0 + f1
 
         ::
 
@@ -189,21 +250,33 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         if elt not in self.superalgebra():
             raise ValueError("not an element of this subalgebra")
 
-        coords = self.vector_space().coordinate_vector(elt.to_vector())
-        return self.from_vector(coords)
+        # The extra hackery is because foo.to_vector() might not live
+        # in foo.parent().vector_space()! Subspaces of subspaces still
+        # have user bases in the ambient space, though, so only one
+        # level of coordinate_vector() is needed. In other words, if V
+        # is itself a subspace, the basis elements for W will be of
+        # the same length as the basis elements for V -- namely
+        # whatever the dimension of the ambient (parent of V?) space is.
+        V = self.superalgebra().vector_space()
+        W = self.vector_space()
+
+        # Multiply on the left because basis_matrix() is row-wise.
+        ambient_coords = elt.to_vector()*V.basis_matrix()
+        W_coords = W.coordinate_vector(ambient_coords)
+        return self.from_vector(W_coords)
 
 
 
-    def natural_basis_space(self):
+    def matrix_space(self):
         """
-        Return the natural basis space of this algebra, which is identical
-        to that of its superalgebra.
+        Return the matrix space of this algebra, which is identical to
+        that of its superalgebra.
 
-        This is correct "by definition," and avoids a mismatch when the
-        subalgebra is trivial (with no natural basis to infer anything
-        from) and the parent is not.
+        This is correct "by definition," and avoids a mismatch when
+        the subalgebra is trivial (with no matrix basis elements to
+        infer anything from) and the parent is not.
         """
-        return self.superalgebra().natural_basis_space()
+        return self.superalgebra().matrix_space()
 
 
     def superalgebra(self):
@@ -223,21 +296,25 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: basis = (x^0, x^1, x^2)
+            sage: E11 = matrix(ZZ, [ [1,0,0],
+            ....:                    [0,0,0],
+            ....:                    [0,0,0] ])
+            sage: E22 = matrix(ZZ, [ [0,0,0],
+            ....:                    [0,1,0],
+            ....:                    [0,0,0] ])
+            sage: b1 = J(E11)
+            sage: b2 = J(E22)
+            sage: basis = (b1, b2)
             sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over...
+            Vector space of degree 6 and dimension 2 over...
             User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 1  0  2  0  0  5]
-            [ 1  0  4  0  0 25]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (1, 0, 2, 0, 0, 5)
-            sage: (x^2).to_vector()
-            (1, 0, 4, 0, 0, 25)
+            [1 0 0 0 0 0]
+            [0 0 1 0 0 0]
+            sage: b1.to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: b2.to_vector()
+            (0, 0, 1, 0, 0, 0)
 
         """
         return self._vector_space