]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: refactor the element subalgebra stuff into generic subalgebra.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index fee718b14ff32d96a00e7b8c9f1e8ed09066d733..b07f7e25ee599322cad6ec0d94bdd23bf0a964fe 100644 (file)
@@ -2,9 +2,8 @@ from sage.matrix.constructor import matrix
 
 from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_utils import gram_schmidt
 
-class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
     """
     SETUP::
 
@@ -23,6 +22,17 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
         sage: actual == expected
         True
 
+    The left-multiplication-by operator for elements in the subalgebra
+    works like it does in the superalgebra, even if we orthonormalize
+    our basis::
+
+        sage: set_random_seed()
+        sage: x = random_eja(AA).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+        sage: y = A.random_element()
+        sage: y.operator()(A.one()) == y
+        True
+
     """
 
     def superalgebra_element(self):
@@ -68,9 +78,9 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 
 
 
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
-    The subalgebra of an EJA generated by a single element.
+    A subalgebra of an EJA with a given basis.
 
     SETUP::
 
@@ -99,11 +109,12 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         1
 
     """
-    def __init__(self, elt, orthonormalize_basis):
-        self._superalgebra = elt.parent()
-        category = self._superalgebra.category().Associative()
+    def __init__(self, superalgebra, basis, rank=None, category=None):
+        self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
+        if category is None:
+            category = self._superalgebra.category()
 
         # A half-assed attempt to ensure that we don't collide with
         # the superalgebra's prefix (ignoring the fact that there
@@ -117,52 +128,9 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         except ValueError:
             prefix = prefixen[0]
 
-        if elt.is_zero():
-            # Short circuit because 0^0 == 1 is going to make us
-            # think we have a one-dimensional algebra otherwise.
-            natural_basis = tuple()
-            mult_table = tuple()
-            rank = 0
-            self._vector_space = V.zero_subspace()
-            self._superalgebra_basis = []
-            fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra,
-                          self)
-            return fdeja.__init__(field,
-                                  mult_table,
-                                  rank,
-                                  prefix=prefix,
-                                  category=category,
-                                  natural_basis=natural_basis)
-
-
-        # This list is guaranteed to contain all independent powers,
-        # because it's the maximal set of powers that could possibly
-        # be independent (by a dimension argument).
-        powers = [ elt**k for k in range(V.dimension()) ]
-
-        if orthonormalize_basis == False:
-            # In this case, we just need to figure out which elements
-            # of the "powers" list are redundant... First compute the
-            # vector subspace spanned by the powers of the given
-            # element.
-            power_vectors = [ p.to_vector() for p in powers ]
-
-            # Figure out which powers form a linearly-independent set.
-            ind_rows = matrix(field, power_vectors).pivot_rows()
-
-            # Pick those out of the list of all powers.
-            superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
-
-            # If our superalgebra is a subalgebra of something else, then
-            # these vectors won't have the right coordinates for
-            # V.span_of_basis() unless we use V.from_vector() on them.
-            basis_vectors = map(power_vectors.__getitem__, ind_rows)
-        else:
-            # If we're going to orthonormalize the basis anyway, we
-            # might as well just do Gram-Schmidt on the whole list of
-            # powers. The redundant ones will get zero'd out.
-            superalgebra_basis = gram_schmidt(powers)
-            basis_vectors = [ b.to_vector() for b in superalgebra_basis ]
+        basis_vectors = [ b.to_vector() for b in basis ]
+        superalgebra_basis = [ self._superalgebra.from_vector(b)
+                               for b in basis_vectors ]
 
         W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
         n = len(superalgebra_basis)
@@ -177,14 +145,6 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                 product_vector = V.from_vector(product.to_vector())
                 mult_table[i][j] = W.coordinate_vector(product_vector)
 
-        # The rank is the highest possible degree of a minimal
-        # polynomial, and is bounded above by the dimension. We know
-        # in this case that there's an element whose minimal
-        # polynomial has the same degree as the space's dimension
-        # (remember how we constructed the space?), so that must be
-        # its rank too.
-        rank = W.dimension()
-
         natural_basis = tuple( b.natural_representation()
                                for b in superalgebra_basis )
 
@@ -193,7 +153,7 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         self._superalgebra_basis = superalgebra_basis
 
 
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
+        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
         return fdeja.__init__(field,
                               mult_table,
                               rank,
@@ -202,29 +162,6 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                               natural_basis=natural_basis)
 
 
-    def _a_regular_element(self):
-        """
-        Override the superalgebra method to return the one
-        regular element that is sure to exist in this
-        subalgebra, namely the element that generated it.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import random_eja
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: J._a_regular_element().is_regular()
-            True
-
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(1)
-
 
     def _element_constructor_(self, elt):
         """
@@ -235,35 +172,25 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
             sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+            sage: basis = tuple( x^k for k in range(J.rank()) )
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: [ K(x^k) for k in range(J.rank()) ]
             [f0, f1, f2]
 
         ::
 
         """
-        if elt == 0:
-            # Just as in the superalgebra class, we need to hack
-            # this special case to ensure that random_element() can
-            # coerce a ring zero into the algebra.
-            return self.zero()
-
-        if elt in self.superalgebra():
-            coords = self.vector_space().coordinate_vector(elt.to_vector())
-            return self.from_vector(coords)
+        if elt not in self.superalgebra():
+            raise ValueError("not an element of this subalgebra")
 
-
-    def one_basis(self):
-        """
-        Return the basis-element-index of this algebra's unit element.
-        """
-        return 0
+        coords = self.vector_space().coordinate_vector(elt.to_vector())
+        return self.from_vector(coords)
 
 
     def one(self):
@@ -271,10 +198,10 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         Return the multiplicative identity element of this algebra.
 
         The superclass method computes the identity element, which is
-        beyond overkill in this case: the algebra identity should be our
-        first basis element. We implement this via :meth:`one_basis`
-        because that method can optionally be used by other parts of the
-        category framework.
+        beyond overkill in this case: the superalgebra identity
+        restricted to this algebra is its identity. Note that we can't
+        count on the first basis element being the identity -- it migth
+        have been scaled if we orthonormalized the basis.
 
         SETUP::
 
@@ -295,27 +222,54 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
 
         TESTS:
 
-        The identity element acts like the identity::
+        The identity element acts like the identity over the rationals::
 
             sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: x = J.random_element()
-            sage: J.one()*x == x and x*J.one() == x
+            sage: x = random_eja().random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: x = A.random_element()
+            sage: A.one()*x == x and x*A.one() == x
             True
 
-        The matrix of the unit element's operator is the identity::
+        The identity element acts like the identity over the algebraic
+        reals with an orthonormal basis::
 
             sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: actual = J.one().operator().matrix()
-            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: x = random_eja(AA).random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+            sage: x = A.random_element()
+            sage: A.one()*x == x and x*A.one() == x
+            True
+
+        The matrix of the unit element's operator is the identity over
+        the rationals::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
             sage: actual == expected
             True
+
+        The matrix of the unit element's operator is the identity over
+        the algebraic reals with an orthonormal basis::
+
+            sage: set_random_seed()
+            sage: x = random_eja(AA).random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
+
         """
         if self.dimension() == 0:
             return self.zero()
         else:
-            return self.monomial(self.one_basis())
+            sa_one = self.superalgebra().one().to_vector()
+            sa_coords = self.vector_space().coordinate_vector(sa_one)
+            return self.from_vector(sa_coords)
 
 
     def natural_basis_space(self):
@@ -342,13 +296,14 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
             sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+            sage: basis = (x^0, x^1, x^2)
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
             Vector space of degree 6 and dimension 3 over...
             User basis matrix:
@@ -366,4 +321,4 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         return self._vector_space
 
 
-    Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement
+    Element = FiniteDimensionalEuclideanJordanSubalgebraElement