]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: fix sub-subalgebra element construction.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index b07f7e25ee599322cad6ec0d94bdd23bf0a964fe..4355e9f20e40d1a396f42a686d474c77e18f1b47 100644 (file)
@@ -85,7 +85,28 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1.one().natural_representation()
+        [1 0]
+        [0 0]
+        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2.one().natural_representation()
+        [0 0]
+        [0 1]
 
     TESTS:
 
@@ -177,11 +198,16 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: basis = tuple( x^k for k in range(J.rank()) )
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K(J.one())
+            f1
+            sage: K(J.one() + x)
+            f0 + f1
 
         ::
 
@@ -189,87 +215,13 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         if elt not in self.superalgebra():
             raise ValueError("not an element of this subalgebra")
 
-        coords = self.vector_space().coordinate_vector(elt.to_vector())
-        return self.from_vector(coords)
-
-
-    def one(self):
-        """
-        Return the multiplicative identity element of this algebra.
-
-        The superclass method computes the identity element, which is
-        beyond overkill in this case: the superalgebra identity
-        restricted to this algebra is its identity. Note that we can't
-        count on the first basis element being the identity -- it migth
-        have been scaled if we orthonormalized the basis.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-            ....:                                  random_eja)
-
-        EXAMPLES::
-
-            sage: J = RealCartesianProductEJA(5)
-            sage: J.one()
-            e0 + e1 + e2 + e3 + e4
-            sage: x = sum(J.gens())
-            sage: A = x.subalgebra_generated_by()
-            sage: A.one()
-            f0
-            sage: A.one().superalgebra_element()
-            e0 + e1 + e2 + e3 + e4
-
-        TESTS:
-
-        The identity element acts like the identity over the rationals::
+        # The extra hackery is because foo.to_vector() might not
+        # live in foo.parent().vector_space()!
+        coords = sum( a*b for (a,b)
+                          in zip(elt.to_vector(),
+                                 self.superalgebra().vector_space().basis()) )
+        return self.from_vector(self.vector_space().coordinate_vector(coords))
 
-            sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: x = A.random_element()
-            sage: A.one()*x == x and x*A.one() == x
-            True
-
-        The identity element acts like the identity over the algebraic
-        reals with an orthonormal basis::
-
-            sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
-            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-            sage: x = A.random_element()
-            sage: A.one()*x == x and x*A.one() == x
-            True
-
-        The matrix of the unit element's operator is the identity over
-        the rationals::
-
-            sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: actual = A.one().operator().matrix()
-            sage: expected = matrix.identity(A.base_ring(), A.dimension())
-            sage: actual == expected
-            True
-
-        The matrix of the unit element's operator is the identity over
-        the algebraic reals with an orthonormal basis::
-
-            sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
-            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-            sage: actual = A.one().operator().matrix()
-            sage: expected = matrix.identity(A.base_ring(), A.dimension())
-            sage: actual == expected
-            True
-
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            sa_one = self.superalgebra().one().to_vector()
-            sa_coords = self.vector_space().coordinate_vector(sa_one)
-            return self.from_vector(sa_coords)
 
 
     def natural_basis_space(self):
@@ -301,21 +253,25 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: basis = (x^0, x^1, x^2)
+            sage: E11 = matrix(ZZ, [ [1,0,0],
+            ....:                    [0,0,0],
+            ....:                    [0,0,0] ])
+            sage: E22 = matrix(ZZ, [ [0,0,0],
+            ....:                    [0,1,0],
+            ....:                    [0,0,0] ])
+            sage: b1 = J(E11)
+            sage: b2 = J(E22)
+            sage: basis = (b1, b2)
             sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over...
+            Vector space of degree 6 and dimension 2 over...
             User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 1  0  2  0  0  5]
-            [ 1  0  4  0  0 25]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (1, 0, 2, 0, 0, 5)
-            sage: (x^2).to_vector()
-            (1, 0, 4, 0, 0, 25)
+            [1 0 0 0 0 0]
+            [0 0 1 0 0 0]
+            sage: b1.to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: b2.to_vector()
+            (0, 0, 1, 0, 0, 0)
 
         """
         return self._vector_space