]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: expand an existing subalgebra test.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index b07f7e25ee599322cad6ec0d94bdd23bf0a964fe..292c770c8b2bb8d52ecc38c25c1170a36ded59bc 100644 (file)
@@ -56,6 +56,14 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
             f1
             sage: A(x).superalgebra_element()
             e0 + e1 + e2 + e3 + e4 + e5
+            sage: y = sum(A.gens())
+            sage: y
+            f0 + f1
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y)
+            g1
+            sage: B(y).superalgebra_element()
+            f0 + f1
 
         TESTS:
 
@@ -70,10 +78,17 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
             sage: y = A.random_element()
             sage: A(y.superalgebra_element()) == y
             True
+            sage: B = y.subalgebra_generated_by()
+            sage: B(y).superalgebra_element() == y
+            True
 
         """
-        return self.parent().superalgebra().linear_combination(
-          zip(self.parent()._superalgebra_basis, self.to_vector()) )
+        W = self.parent().vector_space()
+        V = self.parent().superalgebra().vector_space()
+        A = W.basis_matrix().transpose()
+        W_coords = A*self.to_vector()
+        V_coords = V.coordinate_vector(W_coords)
+        return self.parent().superalgebra().from_vector(V_coords)
 
 
 
@@ -85,7 +100,28 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1.one().natural_representation()
+        [1 0]
+        [0 0]
+        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2.one().natural_representation()
+        [0 0]
+        [0 1]
 
     TESTS:
 
@@ -109,7 +145,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         1
 
     """
-    def __init__(self, superalgebra, basis, rank=None, category=None):
+    def __init__(self, superalgebra, basis, category=None, check_axioms=True):
         self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
@@ -132,7 +168,11 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         superalgebra_basis = [ self._superalgebra.from_vector(b)
                                for b in basis_vectors ]
 
+        # If our superalgebra is a subalgebra of something else, then
+        # these vectors won't have the right coordinates for
+        # V.span_of_basis() unless we use V.from_vector() on them.
         W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
+
         n = len(superalgebra_basis)
         mult_table = [[W.zero() for i in range(n)] for j in range(n)]
         for i in range(n):
@@ -150,16 +190,15 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
 
 
         self._vector_space = W
-        self._superalgebra_basis = superalgebra_basis
-
 
         fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
-        return fdeja.__init__(field,
-                              mult_table,
-                              rank,
-                              prefix=prefix,
-                              category=category,
-                              natural_basis=natural_basis)
+        fdeja.__init__(field,
+                       mult_table,
+                       prefix=prefix,
+                       category=category,
+                       natural_basis=natural_basis,
+                       check_field=False,
+                       check_axioms=check_axioms)
 
 
 
@@ -177,11 +216,16 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: basis = tuple( x^k for k in range(J.rank()) )
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K(J.one())
+            f1
+            sage: K(J.one() + x)
+            f0 + f1
 
         ::
 
@@ -189,87 +233,13 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         if elt not in self.superalgebra():
             raise ValueError("not an element of this subalgebra")
 
-        coords = self.vector_space().coordinate_vector(elt.to_vector())
-        return self.from_vector(coords)
-
-
-    def one(self):
-        """
-        Return the multiplicative identity element of this algebra.
-
-        The superclass method computes the identity element, which is
-        beyond overkill in this case: the superalgebra identity
-        restricted to this algebra is its identity. Note that we can't
-        count on the first basis element being the identity -- it migth
-        have been scaled if we orthonormalized the basis.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-            ....:                                  random_eja)
-
-        EXAMPLES::
-
-            sage: J = RealCartesianProductEJA(5)
-            sage: J.one()
-            e0 + e1 + e2 + e3 + e4
-            sage: x = sum(J.gens())
-            sage: A = x.subalgebra_generated_by()
-            sage: A.one()
-            f0
-            sage: A.one().superalgebra_element()
-            e0 + e1 + e2 + e3 + e4
-
-        TESTS:
+        # The extra hackery is because foo.to_vector() might not
+        # live in foo.parent().vector_space()!
+        coords = sum( a*b for (a,b)
+                          in zip(elt.to_vector(),
+                                 self.superalgebra().vector_space().basis()) )
+        return self.from_vector(self.vector_space().coordinate_vector(coords))
 
-        The identity element acts like the identity over the rationals::
-
-            sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: x = A.random_element()
-            sage: A.one()*x == x and x*A.one() == x
-            True
-
-        The identity element acts like the identity over the algebraic
-        reals with an orthonormal basis::
-
-            sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
-            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-            sage: x = A.random_element()
-            sage: A.one()*x == x and x*A.one() == x
-            True
-
-        The matrix of the unit element's operator is the identity over
-        the rationals::
-
-            sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: actual = A.one().operator().matrix()
-            sage: expected = matrix.identity(A.base_ring(), A.dimension())
-            sage: actual == expected
-            True
-
-        The matrix of the unit element's operator is the identity over
-        the algebraic reals with an orthonormal basis::
-
-            sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
-            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-            sage: actual = A.one().operator().matrix()
-            sage: expected = matrix.identity(A.base_ring(), A.dimension())
-            sage: actual == expected
-            True
-
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            sa_one = self.superalgebra().one().to_vector()
-            sa_coords = self.vector_space().coordinate_vector(sa_one)
-            return self.from_vector(sa_coords)
 
 
     def natural_basis_space(self):
@@ -301,21 +271,25 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: basis = (x^0, x^1, x^2)
+            sage: E11 = matrix(ZZ, [ [1,0,0],
+            ....:                    [0,0,0],
+            ....:                    [0,0,0] ])
+            sage: E22 = matrix(ZZ, [ [0,0,0],
+            ....:                    [0,1,0],
+            ....:                    [0,0,0] ])
+            sage: b1 = J(E11)
+            sage: b2 = J(E22)
+            sage: basis = (b1, b2)
             sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over...
+            Vector space of degree 6 and dimension 2 over...
             User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 1  0  2  0  0  5]
-            [ 1  0  4  0  0 25]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (1, 0, 2, 0, 0, 5)
-            sage: (x^2).to_vector()
-            (1, 0, 4, 0, 0, 25)
+            [1 0 0 0 0 0]
+            [0 0 1 0 0 0]
+            sage: b1.to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: b2.to_vector()
+            (0, 0, 1, 0, 0, 0)
 
         """
         return self._vector_space