]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: fix the natural representation in trivial subalgebras.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 5e782cf4a69b13d0d6c2e36beb5b190d81ddb3b4..2318d12bfd0ebbfc765ca74766af9ab0e73ce02c 100644 (file)
@@ -71,19 +71,81 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The subalgebra of an EJA generated by a single element.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+        ....:                                  JordanSpinEJA)
+
+    TESTS:
+
+    Ensure that our generator names don't conflict with the superalgebra::
+
+        sage: J = JordanSpinEJA(3)
+        sage: J.one().subalgebra_generated_by().gens()
+        (f0,)
+        sage: J = JordanSpinEJA(3, prefix='f')
+        sage: J.one().subalgebra_generated_by().gens()
+        (g0,)
+        sage: J = JordanSpinEJA(3, prefix='b')
+        sage: J.one().subalgebra_generated_by().gens()
+        (c0,)
+
+    Ensure that we can find subalgebras of subalgebras::
+
+        sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
+        sage: B = A.one().subalgebra_generated_by()
+        sage: B.dimension()
+        1
+
     """
     def __init__(self, elt):
-        superalgebra = elt.parent()
+        self._superalgebra = elt.parent()
+        category = self._superalgebra.category().Associative()
+        V = self._superalgebra.vector_space()
+        field = self._superalgebra.base_ring()
+
+        # A half-assed attempt to ensure that we don't collide with
+        # the superalgebra's prefix (ignoring the fact that there
+        # could be super-superelgrbas in scope). If possible, we
+        # try to "increment" the parent algebra's prefix, although
+        # this idea goes out the window fast because some prefixen
+        # are off-limits.
+        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
+        try:
+            prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
+        except ValueError:
+            prefix = prefixen[0]
+
+        if elt.is_zero():
+            # Short circuit because 0^0 == 1 is going to make us
+            # think we have a one-dimensional algebra otherwise.
+            natural_basis = tuple()
+            mult_table = tuple()
+            rank = 0
+            self._vector_space = V.zero_subspace()
+            self._superalgebra_basis = []
+            fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra,
+                          self)
+            return fdeja.__init__(field,
+                                  mult_table,
+                                  rank,
+                                  prefix=prefix,
+                                  category=category,
+                                  natural_basis=natural_basis)
+
 
         # First compute the vector subspace spanned by the powers of
         # the given element.
-        V = superalgebra.vector_space()
-        superalgebra_basis = [superalgebra.one()]
-        basis_vectors = [superalgebra.one().to_vector()]
+        superalgebra_basis = [self._superalgebra.one()]
+        # If our superalgebra is a subalgebra of something else, then
+        # superalgebra.one().to_vector() won't have the right
+        # coordinates unless we use V.from_vector() below.
+        basis_vectors = [V.from_vector(self._superalgebra.one().to_vector())]
         W = V.span_of_basis(basis_vectors)
         for exponent in range(1, V.dimension()):
             new_power = elt**exponent
-            basis_vectors.append( new_power.to_vector() )
+            basis_vectors.append( V.from_vector(new_power.to_vector()) )
             try:
                 W = V.span_of_basis(basis_vectors)
                 superalgebra_basis.append( new_power )
@@ -98,32 +160,17 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         # Now figure out the entries of the right-multiplication
         # matrix for the successive basis elements b0, b1,... of
         # that subspace.
-        field = superalgebra.base_ring()
-        mult_table = []
-        for b_right in superalgebra_basis:
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in superalgebra_basis:
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = W.coordinates((b_left*b_right).to_vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(field, b_right_rows)
-                mult_table.append(b_right_matrix)
-
-        for m in mult_table:
-            m.set_immutable()
-        mult_table = tuple(mult_table)
-
-        # TODO: We'll have to redo this and make it unique again...
-        prefix = 'f'
+        n = len(superalgebra_basis)
+        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
+        for i in range(n):
+            for j in range(n):
+                product = superalgebra_basis[i]*superalgebra_basis[j]
+                # product.to_vector() might live in a vector subspace
+                # if our parent algebra is already a subalgebra. We
+                # use V.from_vector() to make it "the right size" in
+                # that case.
+                product_vector = V.from_vector(product.to_vector())
+                mult_table[i][j] = W.coordinate_vector(product_vector)
 
         # The rank is the highest possible degree of a minimal
         # polynomial, and is bounded above by the dimension. We know
@@ -133,11 +180,10 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         # its rank too.
         rank = W.dimension()
 
-        category = superalgebra.category().Associative()
         natural_basis = tuple( b.natural_representation()
                                for b in superalgebra_basis )
 
-        self._superalgebra = superalgebra
+
         self._vector_space = W
         self._superalgebra_basis = superalgebra_basis
 
@@ -151,6 +197,30 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                               natural_basis=natural_basis)
 
 
+    def _a_regular_element(self):
+        """
+        Override the superalgebra method to return the one
+        regular element that is sure to exist in this
+        subalgebra, namely the element that generated it.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja().random_element().subalgebra_generated_by()
+            sage: J._a_regular_element().is_regular()
+            True
+
+        """
+        if self.dimension() == 0:
+            return self.zero()
+        else:
+            return self.monomial(1)
+
+
     def _element_constructor_(self, elt):
         """
         Construct an element of this subalgebra from the given one.
@@ -173,11 +243,88 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         ::
 
         """
+        if elt == 0:
+            # Just as in the superalgebra class, we need to hack
+            # this special case to ensure that random_element() can
+            # coerce a ring zero into the algebra.
+            return self.zero()
+
         if elt in self.superalgebra():
             coords = self.vector_space().coordinate_vector(elt.to_vector())
             return self.from_vector(coords)
 
 
+    def one_basis(self):
+        """
+        Return the basis-element-index of this algebra's unit element.
+        """
+        return 0
+
+
+    def one(self):
+        """
+        Return the multiplicative identity element of this algebra.
+
+        The superclass method computes the identity element, which is
+        beyond overkill in this case: the algebra identity should be our
+        first basis element. We implement this via :meth:`one_basis`
+        because that method can optionally be used by other parts of the
+        category framework.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A.one()
+            f0
+            sage: A.one().superalgebra_element()
+            e0 + e1 + e2 + e3 + e4
+
+        TESTS:
+
+        The identity element acts like the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja().random_element().subalgebra_generated_by()
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+
+        The matrix of the unit element's operator is the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja().random_element().subalgebra_generated_by()
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+        """
+        if self.dimension() == 0:
+            return self.zero()
+        else:
+            return self.monomial(self.one_basis())
+
+
+    def natural_basis_space(self):
+        """
+        Return the natural basis space of this algebra, which is identical
+        to that of its superalgebra.
+
+        This is correct "by definition," and avoids a mismatch when the
+        subalgebra is trivial (with no natural basis to infer anything
+        from) and the parent is not.
+        """
+        return self.superalgebra().natural_basis_space()
+
+
     def superalgebra(self):
         """
         Return the superalgebra that this algebra was generated from.