]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: add another non-element subalgebra example.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 2318d12bfd0ebbfc765ca74766af9ab0e73ce02c..0be85616678d4f7f7ffa276ddcd13ab907c6e116 100644 (file)
@@ -3,8 +3,7 @@ from sage.matrix.constructor import matrix
 from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
 
-
-class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
     """
     SETUP::
 
@@ -23,6 +22,17 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
         sage: actual == expected
         True
 
+    The left-multiplication-by operator for elements in the subalgebra
+    works like it does in the superalgebra, even if we orthonormalize
+    our basis::
+
+        sage: set_random_seed()
+        sage: x = random_eja(AA).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
+        sage: y = A.random_element()
+        sage: y.operator()(A.one()) == y
+        True
+
     """
 
     def superalgebra_element(self):
@@ -68,14 +78,35 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 
 
 
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
-    The subalgebra of an EJA generated by a single element.
+    A subalgebra of an EJA with a given basis.
 
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(QQ, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(QQ, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1.one().natural_representation()
+        [1 0]
+        [0 0]
+        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2.one().natural_representation()
+        [0 0]
+        [0 1]
 
     TESTS:
 
@@ -99,11 +130,12 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         1
 
     """
-    def __init__(self, elt):
-        self._superalgebra = elt.parent()
-        category = self._superalgebra.category().Associative()
+    def __init__(self, superalgebra, basis, rank=None, category=None):
+        self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
+        if category is None:
+            category = self._superalgebra.category()
 
         # A half-assed attempt to ensure that we don't collide with
         # the superalgebra's prefix (ignoring the fact that there
@@ -117,49 +149,11 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         except ValueError:
             prefix = prefixen[0]
 
-        if elt.is_zero():
-            # Short circuit because 0^0 == 1 is going to make us
-            # think we have a one-dimensional algebra otherwise.
-            natural_basis = tuple()
-            mult_table = tuple()
-            rank = 0
-            self._vector_space = V.zero_subspace()
-            self._superalgebra_basis = []
-            fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra,
-                          self)
-            return fdeja.__init__(field,
-                                  mult_table,
-                                  rank,
-                                  prefix=prefix,
-                                  category=category,
-                                  natural_basis=natural_basis)
-
-
-        # First compute the vector subspace spanned by the powers of
-        # the given element.
-        superalgebra_basis = [self._superalgebra.one()]
-        # If our superalgebra is a subalgebra of something else, then
-        # superalgebra.one().to_vector() won't have the right
-        # coordinates unless we use V.from_vector() below.
-        basis_vectors = [V.from_vector(self._superalgebra.one().to_vector())]
-        W = V.span_of_basis(basis_vectors)
-        for exponent in range(1, V.dimension()):
-            new_power = elt**exponent
-            basis_vectors.append( V.from_vector(new_power.to_vector()) )
-            try:
-                W = V.span_of_basis(basis_vectors)
-                superalgebra_basis.append( new_power )
-            except ValueError:
-                # Vectors weren't independent; bail and keep the
-                # last subspace that worked.
-                break
-
-        # Make the basis hashable for UniqueRepresentation.
-        superalgebra_basis = tuple(superalgebra_basis)
-
-        # Now figure out the entries of the right-multiplication
-        # matrix for the successive basis elements b0, b1,... of
-        # that subspace.
+        basis_vectors = [ b.to_vector() for b in basis ]
+        superalgebra_basis = [ self._superalgebra.from_vector(b)
+                               for b in basis_vectors ]
+
+        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
         n = len(superalgebra_basis)
         mult_table = [[W.zero() for i in range(n)] for j in range(n)]
         for i in range(n):
@@ -172,14 +166,6 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                 product_vector = V.from_vector(product.to_vector())
                 mult_table[i][j] = W.coordinate_vector(product_vector)
 
-        # The rank is the highest possible degree of a minimal
-        # polynomial, and is bounded above by the dimension. We know
-        # in this case that there's an element whose minimal
-        # polynomial has the same degree as the space's dimension
-        # (remember how we constructed the space?), so that must be
-        # its rank too.
-        rank = W.dimension()
-
         natural_basis = tuple( b.natural_representation()
                                for b in superalgebra_basis )
 
@@ -188,7 +174,7 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         self._superalgebra_basis = superalgebra_basis
 
 
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
+        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
         return fdeja.__init__(field,
                               mult_table,
                               rank,
@@ -197,29 +183,6 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
                               natural_basis=natural_basis)
 
 
-    def _a_regular_element(self):
-        """
-        Override the superalgebra method to return the one
-        regular element that is sure to exist in this
-        subalgebra, namely the element that generated it.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import random_eja
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: J._a_regular_element().is_regular()
-            True
-
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(1)
-
 
     def _element_constructor_(self, elt):
         """
@@ -230,87 +193,31 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(QQ, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K(J.one())
+            f1
+            sage: K(J.one() + x)
+            f0 + f1
 
         ::
 
         """
-        if elt == 0:
-            # Just as in the superalgebra class, we need to hack
-            # this special case to ensure that random_element() can
-            # coerce a ring zero into the algebra.
-            return self.zero()
-
-        if elt in self.superalgebra():
-            coords = self.vector_space().coordinate_vector(elt.to_vector())
-            return self.from_vector(coords)
-
-
-    def one_basis(self):
-        """
-        Return the basis-element-index of this algebra's unit element.
-        """
-        return 0
-
-
-    def one(self):
-        """
-        Return the multiplicative identity element of this algebra.
-
-        The superclass method computes the identity element, which is
-        beyond overkill in this case: the algebra identity should be our
-        first basis element. We implement this via :meth:`one_basis`
-        because that method can optionally be used by other parts of the
-        category framework.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-            ....:                                  random_eja)
-
-        EXAMPLES::
-
-            sage: J = RealCartesianProductEJA(5)
-            sage: J.one()
-            e0 + e1 + e2 + e3 + e4
-            sage: x = sum(J.gens())
-            sage: A = x.subalgebra_generated_by()
-            sage: A.one()
-            f0
-            sage: A.one().superalgebra_element()
-            e0 + e1 + e2 + e3 + e4
-
-        TESTS:
-
-        The identity element acts like the identity::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: x = J.random_element()
-            sage: J.one()*x == x and x*J.one() == x
-            True
+        if elt not in self.superalgebra():
+            raise ValueError("not an element of this subalgebra")
 
-        The matrix of the unit element's operator is the identity::
+        coords = self.vector_space().coordinate_vector(elt.to_vector())
+        return self.from_vector(coords)
 
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: actual = J.one().operator().matrix()
-            sage: expected = matrix.identity(J.base_ring(), J.dimension())
-            sage: actual == expected
-            True
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(self.one_basis())
 
 
     def natural_basis_space(self):
@@ -337,28 +244,33 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
+            sage: E11 = matrix(QQ, [ [1,0,0],
+            ....:                    [0,0,0],
+            ....:                    [0,0,0] ])
+            sage: E22 = matrix(QQ, [ [0,0,0],
+            ....:                    [0,1,0],
+            ....:                    [0,0,0] ])
+            sage: b1 = J(E11)
+            sage: b2 = J(E22)
+            sage: basis = (b1, b2)
+            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
             sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over Rational Field
+            Vector space of degree 6 and dimension 2 over...
             User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 0  1  2  3  4  5]
-            [10 14 21 19 31 50]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (0, 1, 2, 3, 4, 5)
-            sage: (x^2).to_vector()
-            (10, 14, 21, 19, 31, 50)
+            [1 0 0 0 0 0]
+            [0 0 1 0 0 0]
+            sage: b1.to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: b2.to_vector()
+            (0, 0, 1, 0, 0, 0)
 
         """
         return self._vector_space
 
 
-    Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement
+    Element = FiniteDimensionalEuclideanJordanSubalgebraElement