]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_element_subalgebra.py
eja: work towards fixing element subalgebras.
[sage.d.git] / mjo / eja / eja_element_subalgebra.py
index 7cf3f3702adb5832a7ef4bb86a80b24431d87a54..ee8e0c67db2773537aefc04d82ee58b7a0b4cca0 100644 (file)
@@ -1,53 +1,25 @@
 from sage.matrix.constructor import matrix
+from sage.misc.cachefunc import cached_method
+from sage.rings.all import QQ
 
-from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
-
-
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanSubalgebra):
-    def __init__(self, elt, orthonormalize_basis):
-        self._superalgebra = elt.parent()
-        category = self._superalgebra.category().Associative()
-        V = self._superalgebra.vector_space()
-        field = self._superalgebra.base_ring()
-
-        # This list is guaranteed to contain all independent powers,
-        # because it's the maximal set of powers that could possibly
-        # be independent (by a dimension argument).
-        powers = [ elt**k for k in range(V.dimension()) ]
-        power_vectors = [ p.to_vector() for p in powers ]
-        P = matrix(field, power_vectors)
-
-        if orthonormalize_basis == False:
-            # In this case, we just need to figure out which elements
-            # of the "powers" list are redundant... First compute the
-            # vector subspace spanned by the powers of the given
-            # element.
-
-            # Figure out which powers form a linearly-independent set.
-            ind_rows = P.pivot_rows()
-
-            # Pick those out of the list of all powers.
-            superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
-
-            # If our superalgebra is a subalgebra of something else, then
-            # these vectors won't have the right coordinates for
-            # V.span_of_basis() unless we use V.from_vector() on them.
-            basis_vectors = map(power_vectors.__getitem__, ind_rows)
-        else:
-            # If we're going to orthonormalize the basis anyway, we
-            # might as well just do Gram-Schmidt on the whole list of
-            # powers. The redundant ones will get zero'd out. If this
-            # looks like a roundabout way to orthonormalize, it is.
-            # But converting everything from algebra elements to vectors
-            # to matrices and then back again turns out to be about
-            # as fast as reimplementing our own Gram-Schmidt that
-            # works in an EJA.
-            G,_ = P.gram_schmidt(orthonormal=True)
-            basis_vectors = [ g for g in G.rows() if not g.is_zero() ]
-            superalgebra_basis = [ self._superalgebra.from_vector(b)
-                                   for b in basis_vectors ]
-
-        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
+from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+
+
+class FiniteDimensionalEJAElementSubalgebra(FiniteDimensionalEJASubalgebra):
+    def __init__(self, elt, orthonormalize=True, **kwargs):
+        superalgebra = elt.parent()
+
+        # TODO: going up to the superalgebra dimension here is
+        # overkill.  We should append p vectors as rows to a matrix
+        # and continually rref() it until the rank stops going
+        # up. When n=10 but the dimension of the algebra is 1, that
+        # can save a shitload of time (especially over AA).
+        powers = tuple( elt**k for k in range(elt.degree()) )
+
+        super().__init__(superalgebra,
+                         powers,
+                         associative=True,
+                         **kwargs)
 
         # The rank is the highest possible degree of a minimal
         # polynomial, and is bounded above by the dimension. We know
@@ -55,73 +27,10 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         # polynomial has the same degree as the space's dimension
         # (remember how we constructed the space?), so that must be
         # its rank too.
-        rank = W.dimension()
-
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
-        return fdeja.__init__(self._superalgebra,
-                              superalgebra_basis,
-                              rank=rank,
-                              category=category)
-
-
-    def _a_regular_element(self):
-        """
-        Override the superalgebra method to return the one
-        regular element that is sure to exist in this
-        subalgebra, namely the element that generated it.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import random_eja
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: J._a_regular_element().is_regular()
-            True
-
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(1)
-
-
-    def _element_constructor_(self, elt):
-        """
-        Construct an element of this subalgebra from the given one.
-        The only valid arguments are elements of the parent algebra
-        that happen to live in this subalgebra.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_element_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
-
-        EXAMPLES::
-
-            sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
-
-        ::
-
-        """
-        if elt == 0:
-            # Just as in the superalgebra class, we need to hack
-            # this special case to ensure that random_element() can
-            # coerce a ring zero into the algebra.
-            return self.zero()
-
-        if elt in self.superalgebra():
-            coords = self.vector_space().coordinate_vector(elt.to_vector())
-            return self.from_vector(coords)
-
+        self.rank.set_cache(self.dimension())
 
 
+    @cached_method
     def one(self):
         """
         Return the multiplicative identity element of this algebra.
@@ -129,17 +38,17 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         The superclass method computes the identity element, which is
         beyond overkill in this case: the superalgebra identity
         restricted to this algebra is its identity. Note that we can't
-        count on the first basis element being the identity -- it migth
+        count on the first basis element being the identity -- it might
         have been scaled if we orthonormalized the basis.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
             ....:                                  random_eja)
 
         EXAMPLES::
 
-            sage: J = RealCartesianProductEJA(5)
+            sage: J = HadamardEJA(5)
             sage: J.one()
             e0 + e1 + e2 + e3 + e4
             sage: x = sum(J.gens())
@@ -154,7 +63,7 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         The identity element acts like the identity over the rationals::
 
             sage: set_random_seed()
-            sage: x = random_eja().random_element()
+            sage: x = random_eja(field=QQ,orthonormalize=False).random_element()
             sage: A = x.subalgebra_generated_by()
             sage: x = A.random_element()
             sage: A.one()*x == x and x*A.one() == x
@@ -164,7 +73,7 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         reals with an orthonormal basis::
 
             sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
+            sage: x = random_eja().random_element()
             sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
             sage: x = A.random_element()
             sage: A.one()*x == x and x*A.one() == x
@@ -174,7 +83,7 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         the rationals::
 
             sage: set_random_seed()
-            sage: x = random_eja().random_element()
+            sage: x = random_eja(field=QQ,orthonormalize=False).random_element()
             sage: A = x.subalgebra_generated_by()
             sage: actual = A.one().operator().matrix()
             sage: expected = matrix.identity(A.base_ring(), A.dimension())
@@ -185,7 +94,7 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         the algebraic reals with an orthonormal basis::
 
             sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
+            sage: x = random_eja().random_element()
             sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
             sage: actual = A.one().operator().matrix()
             sage: expected = matrix.identity(A.base_ring(), A.dimension())
@@ -195,56 +104,6 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         """
         if self.dimension() == 0:
             return self.zero()
-        else:
-            sa_one = self.superalgebra().one().to_vector()
-            sa_coords = self.vector_space().coordinate_vector(sa_one)
-            return self.from_vector(sa_coords)
-
-
-    def natural_basis_space(self):
-        """
-        Return the natural basis space of this algebra, which is identical
-        to that of its superalgebra.
-
-        This is correct "by definition," and avoids a mismatch when the
-        subalgebra is trivial (with no natural basis to infer anything
-        from) and the parent is not.
-        """
-        return self.superalgebra().natural_basis_space()
-
-
-    def superalgebra(self):
-        """
-        Return the superalgebra that this algebra was generated from.
-        """
-        return self._superalgebra
-
-
-    def vector_space(self):
-        """
-        SETUP::
 
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_element_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
-
-        EXAMPLES::
-
-            sage: J = RealSymmetricEJA(3)
-            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
-            sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over...
-            User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 1  0  2  0  0  5]
-            [ 1  0  4  0  0 25]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (1, 0, 2, 0, 0, 5)
-            sage: (x^2).to_vector()
-            (1, 0, 4, 0, 0, 25)
-
-        """
-        return self._vector_space
+        return self(self.superalgebra().one())