]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_element.py
eja: define subalgebra_generated_by() to contain the identity.
[sage.d.git] / mjo / eja / eja_element.py
index f26766df80f65de8c31fe12ef3eab5d5bd727c7a..ee33e4ba89fcc3c47be1f9467042dae5e678c859 100644 (file)
@@ -1,3 +1,7 @@
+# -*- coding: utf-8 -*-
+
+from itertools import izip
+
 from sage.matrix.constructor import matrix
 from sage.modules.free_module import VectorSpace
 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
@@ -32,7 +36,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Return ``self`` raised to the power ``n``.
 
         Jordan algebras are always power-associative; see for
-        example Faraut and Koranyi, Proposition II.1.2 (ii).
+        example Faraut and Korányi, Proposition II.1.2 (ii).
 
         We have to override this because our superclass uses row
         vectors instead of column vectors! We, on the other hand,
@@ -78,7 +82,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         elif n == 1:
             return self
         else:
-            return (self.operator()**(n-1))(self)
+            return (self**(n-1))*self
 
 
     def apply_univariate_polynomial(self, p):
@@ -243,9 +247,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: x.inner_product(y) in RR
+            sage: x,y = J.random_elements(2)
+            sage: x.inner_product(y) in RLF
             True
 
         """
@@ -280,9 +283,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Test Lemma 1 from Chapter III of Koecher::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: u = J.random_element()
-            sage: v = J.random_element()
+            sage: u,v = random_eja().random_elements(2)
             sage: lhs = u.operator_commutes_with(u*v)
             sage: rhs = v.operator_commutes_with(u^2)
             sage: lhs == rhs
@@ -292,9 +293,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Chapter III, or from Baes (2.3)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = random_eja().random_elements(2)
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lxx = (x*x).operator()
@@ -306,10 +305,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Baes (2.4)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: x,y,z = random_eja().random_elements(3)
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
@@ -323,10 +319,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Baes (2.5)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: u = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: u,y,z = random_eja().random_elements(3)
             sage: Lu = u.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
@@ -384,12 +377,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             True
 
         Ensure that the determinant is multiplicative on an associative
-        subalgebra as in Faraut and Koranyi's Proposition II.2.2::
+        subalgebra as in Faraut and Korányi's Proposition II.2.2::
 
             sage: set_random_seed()
             sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: (x*y).det() == x.det()*y.det()
             True
 
@@ -415,7 +407,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  JordanSpinEJA,
             ....:                                  random_eja)
 
         EXAMPLES:
@@ -470,6 +463,33 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             ...
             ValueError: element is not invertible
 
+        Proposition II.2.3 in Faraut and Korányi says that the inverse
+        of an element is the inverse of its left-multiplication operator
+        applied to the algebra's identity, when that inverse exists::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: (not x.operator().is_invertible()) or (
+            ....:    x.operator().inverse()(J.one()) == x.inverse() )
+            True
+
+        Proposition II.2.4 in Faraut and Korányi gives a formula for
+        the inverse based on the characteristic polynomial and the
+        Cayley-Hamilton theorem for Euclidean Jordan algebras::
+
+            sage: set_random_seed()
+            sage: J = ComplexHermitianEJA(3)
+            sage: x = J.random_element()
+            sage: while not x.is_invertible():
+            ....:     x = J.random_element()
+            sage: r = J.rank()
+            sage: a = x.characteristic_polynomial().coefficients(sparse=False)
+            sage: expected  = (-1)^(r+1)/x.det()
+            sage: expected *= sum( a[i+1]*x^i for i in range(r) )
+            sage: x.inverse() == expected
+            True
+
         """
         if not self.is_invertible():
             raise ValueError("element is not invertible")
@@ -766,7 +786,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: n_max = RealSymmetricEJA._max_test_case_size()
             sage: n = ZZ.random_element(1, n_max)
             sage: J1 = RealSymmetricEJA(n,QQ)
-            sage: J2 = RealSymmetricEJA(n,QQ,False)
+            sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
             sage: X = random_matrix(QQ,n)
             sage: X = X*X.transpose()
             sage: x1 = J1(X)
@@ -842,7 +862,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         """
         B = self.parent().natural_basis()
         W = self.parent().natural_basis_space()
-        return W.linear_combination(zip(B,self.to_vector()))
+        return W.linear_combination(izip(B,self.to_vector()))
 
 
     def norm(self):
@@ -885,8 +905,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: x.operator()(y) == x*y
             True
             sage: y.operator()(x) == x*y
@@ -936,8 +955,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: Lx = x.operator()
             sage: Lxx = (x*x).operator()
             sage: Qx = x.quadratic_representation()
@@ -982,10 +1000,10 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: not x.is_invertible() or (
             ....:   x.quadratic_representation(x.inverse())*Qx
             ....:   ==
-            ....:   2*x.operator()*Qex - Qx )
+            ....:   2*Lx*Qex - Qx )
             True
 
-            sage: 2*x.operator()*Qex - Qx == Lxx
+            sage: 2*Lx*Qex - Qx == Lxx
             True
 
         Property 5:
@@ -1023,11 +1041,18 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
 
 
-    def subalgebra_generated_by(self):
+    def subalgebra_generated_by(self, orthonormalize_basis=False):
         """
         Return the associative subalgebra of the parent EJA generated
         by this element.
 
+        Since our parent algebra is unital, we want "subalgebra" to mean
+        "unital subalgebra" as well; thus the subalgebra that an element
+        generates will itself be a Euclidean Jordan algebra after
+        restricting the algebra operations appropriately. This is the
+        subalgebra that Faraut and Korányi work with in section II.2, for
+        example.
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import random_eja
@@ -1039,9 +1064,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: set_random_seed()
             sage: x0 = random_eja().random_element()
             sage: A = x0.subalgebra_generated_by()
-            sage: x = A.random_element()
-            sage: y = A.random_element()
-            sage: z = A.random_element()
+            sage: x,y,z = A.random_elements(3)
             sage: (x*y)*z == x*(y*z)
             True
 
@@ -1054,17 +1077,16 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: A(x^2) == A(x)*A(x)
             True
 
-        The subalgebra generated by the zero element is trivial::
+        By definition, the subalgebra generated by the zero element is the
+        one-dimensional algebra generated by the identity element::
 
             sage: set_random_seed()
             sage: A = random_eja().zero().subalgebra_generated_by()
-            sage: A
-            Euclidean Jordan algebra of dimension 0 over...
-            sage: A.one()
-            0
+            sage: A.dimension()
+            1
 
         """
-        return FiniteDimensionalEuclideanJordanElementSubalgebra(self)
+        return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
 
 
     def subalgebra_idempotent(self):
@@ -1152,7 +1174,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.random_element().trace() in J.base_ring()
+            sage: J.random_element().trace() in RLF
             True
 
         """
@@ -1176,14 +1198,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         TESTS:
 
-        The trace inner product is commutative, bilinear, and satisfies
-        the Jordan axiom:
+        The trace inner product is commutative, bilinear, and associative::
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element();
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: x,y,z = J.random_elements(3)
             sage: # commutative
             sage: x.trace_inner_product(y) == y.trace_inner_product(x)
             True
@@ -1199,7 +1218,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             ....:              a*x.trace_inner_product(z) )
             sage: actual == expected
             True
-            sage: # jordan axiom
+            sage: # associative
             sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
             True