]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_element.py
eja: add a WIP gram-schmidt for EJA elements.
[sage.d.git] / mjo / eja / eja_element.py
index 97c048dceb3e299e7a36ac1a15767ebb33af8fad..c2f9fe652851fa4dc2ce519856160efc221debcc 100644 (file)
@@ -1,3 +1,5 @@
+from itertools import izip
+
 from sage.matrix.constructor import matrix
 from sage.modules.free_module import VectorSpace
 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
@@ -78,7 +80,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         elif n == 1:
             return self
         else:
-            return (self.operator()**(n-1))(self)
+            return (self**(n-1))*self
 
 
     def apply_univariate_polynomial(self, p):
@@ -165,6 +167,21 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: x.apply_univariate_polynomial(p)
             0
 
+        The characteristic polynomials of the zero and unit elements
+        should be what we think they are in a subalgebra, too::
+
+            sage: J = RealCartesianProductEJA(3)
+            sage: p1 = J.one().characteristic_polynomial()
+            sage: q1 = J.zero().characteristic_polynomial()
+            sage: e0,e1,e2 = J.gens()
+            sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
+            sage: p2 = A.one().characteristic_polynomial()
+            sage: q2 = A.zero().characteristic_polynomial()
+            sage: p1 == p2
+            True
+            sage: q1 == q2
+            True
+
         """
         p = self.parent().characteristic_polynomial()
         return p(*self.to_vector())
@@ -228,9 +245,8 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: x.inner_product(y) in RR
+            sage: x,y = J.random_elements(2)
+            sage: x.inner_product(y) in RLF
             True
 
         """
@@ -265,9 +281,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Test Lemma 1 from Chapter III of Koecher::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: u = J.random_element()
-            sage: v = J.random_element()
+            sage: u,v = random_eja().random_elements(2)
             sage: lhs = u.operator_commutes_with(u*v)
             sage: rhs = v.operator_commutes_with(u^2)
             sage: lhs == rhs
@@ -277,9 +291,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Chapter III, or from Baes (2.3)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = random_eja().random_elements(2)
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lxx = (x*x).operator()
@@ -291,10 +303,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Baes (2.4)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: x,y,z = random_eja().random_elements(3)
             sage: Lx = x.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
@@ -308,10 +317,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Baes (2.5)::
 
             sage: set_random_seed()
-            sage: J = random_eja()
-            sage: u = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: u,y,z = random_eja().random_elements(3)
             sage: Lu = u.operator()
             sage: Ly = y.operator()
             sage: Lz = z.operator()
@@ -368,6 +374,15 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: x.is_invertible() == (x.det() != 0)
             True
 
+        Ensure that the determinant is multiplicative on an associative
+        subalgebra as in Faraut and Koranyi's Proposition II.2.2::
+
+            sage: set_random_seed()
+            sage: J = random_eja().random_element().subalgebra_generated_by()
+            sage: x,y = J.random_elements(2)
+            sage: (x*y).det() == x.det()*y.det()
+            True
+
         """
         P = self.parent()
         r = P.rank()
@@ -399,8 +414,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Example 11.11::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10)
-            sage: J = JordanSpinEJA(n)
+            sage: J = JordanSpinEJA.random_instance()
             sage: x = J.random_element()
             sage: while not x.is_invertible():
             ....:     x = J.random_element()
@@ -482,14 +496,20 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: J.one().is_invertible()
             True
 
-        The zero element is never invertible::
+        The zero element is never invertible in a non-trivial algebra::
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.zero().is_invertible()
+            sage: (not J.is_trivial()) and J.zero().is_invertible()
             False
 
         """
+        if self.is_zero():
+            if self.parent().is_trivial():
+                return True
+            else:
+                return False
+
         # In fact, we only need to know if the constant term is non-zero,
         # so we can pass in the field's zero element instead.
         zero = self.base_ring().zero()
@@ -620,8 +640,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         aren't multiples of the identity are regular::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10)
-            sage: J = JordanSpinEJA(n)
+            sage: J = JordanSpinEJA.random_instance()
             sage: x = J.random_element()
             sage: x == x.coefficient(0)*J.one() or x.degree() == 2
             True
@@ -645,6 +664,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             True
 
         """
+        if self.is_zero() and not self.parent().is_trivial():
+            # The minimal polynomial of zero in a nontrivial algebra
+            # is "t"; in a trivial algebra it's "1" by convention
+            # (it's an empty product).
+            return 1
         return self.subalgebra_generated_by().dimension()
 
 
@@ -673,6 +697,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
             ....:                                  random_eja)
 
         TESTS:
@@ -698,10 +723,12 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         The minimal polynomial and the characteristic polynomial coincide
         and are known (see Alizadeh, Example 11.11) for all elements of
         the spin factor algebra that aren't scalar multiples of the
-        identity::
+        identity. We require the dimension of the algebra to be at least
+        two here so that said elements actually exist::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(2,10)
+            sage: n_max = max(2, JordanSpinEJA._max_test_case_size())
+            sage: n = ZZ.random_element(2, n_max)
             sage: J = JordanSpinEJA(n)
             sage: y = J.random_element()
             sage: while y == y.coefficient(0)*J.one():
@@ -722,7 +749,34 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: x.apply_univariate_polynomial(p)
             0
 
+        The minimal polynomial is invariant under a change of basis,
+        and in particular, a re-scaling of the basis::
+
+            sage: set_random_seed()
+            sage: n_max = RealSymmetricEJA._max_test_case_size()
+            sage: n = ZZ.random_element(1, n_max)
+            sage: J1 = RealSymmetricEJA(n,QQ)
+            sage: J2 = RealSymmetricEJA(n,QQ,normalize_basis=False)
+            sage: X = random_matrix(QQ,n)
+            sage: X = X*X.transpose()
+            sage: x1 = J1(X)
+            sage: x2 = J2(X)
+            sage: x1.minimal_polynomial() == x2.minimal_polynomial()
+            True
+
         """
+        if self.is_zero():
+            # We would generate a zero-dimensional subalgebra
+            # where the minimal polynomial would be constant.
+            # That might be correct, but only if *this* algebra
+            # is trivial too.
+            if not self.parent().is_trivial():
+                # Pretty sure we know what the minimal polynomial of
+                # the zero operator is going to be. This ensures
+                # consistency of e.g. the polynomial variable returned
+                # in the "normal" case without us having to think about it.
+                return self.operator().minimal_polynomial()
+
         A = self.subalgebra_generated_by()
         return A(self).operator().minimal_polynomial()
 
@@ -777,8 +831,35 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         """
         B = self.parent().natural_basis()
-        W = B[0].matrix_space()
-        return W.linear_combination(zip(B,self.to_vector()))
+        W = self.parent().natural_basis_space()
+        return W.linear_combination(izip(B,self.to_vector()))
+
+
+    def norm(self):
+        """
+        The norm of this element with respect to :meth:`inner_product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(2)
+            sage: x = sum(J.gens())
+            sage: x.norm()
+            sqrt(2)
+
+        ::
+
+            sage: J = JordanSpinEJA(4)
+            sage: x = sum(J.gens())
+            sage: x.norm()
+            2
+
+        """
+        return self.inner_product(self).sqrt()
 
 
     def operator(self):
@@ -794,8 +875,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: x.operator()(y) == x*y
             True
             sage: y.operator()(x) == x*y
@@ -826,10 +906,9 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
         Alizadeh's Example 11.12::
 
             sage: set_random_seed()
-            sage: n = ZZ.random_element(1,10)
-            sage: J = JordanSpinEJA(n)
-            sage: x = J.random_element()
+            sage: x = JordanSpinEJA.random_instance().random_element()
             sage: x_vec = x.to_vector()
+            sage: n = x_vec.degree()
             sage: x0 = x_vec[0]
             sage: x_bar = x_vec[1:]
             sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
@@ -846,8 +925,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
+            sage: x,y = J.random_elements(2)
             sage: Lx = x.operator()
             sage: Lxx = (x*x).operator()
             sage: Qx = x.quadratic_representation()
@@ -864,7 +942,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         Property 2 (multiply on the right for :trac:`28272`):
 
-            sage: alpha = QQ.random_element()
+            sage: alpha = J.base_ring().random_element()
             sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
             True
 
@@ -892,10 +970,10 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: not x.is_invertible() or (
             ....:   x.quadratic_representation(x.inverse())*Qx
             ....:   ==
-            ....:   2*x.operator()*Qex - Qx )
+            ....:   2*Lx*Qex - Qx )
             True
 
-            sage: 2*x.operator()*Qex - Qx == Lxx
+            sage: 2*Lx*Qex - Qx == Lxx
             True
 
         Property 5:
@@ -933,7 +1011,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
 
 
-    def subalgebra_generated_by(self):
+    def subalgebra_generated_by(self, orthonormalize_basis=False):
         """
         Return the associative subalgebra of the parent EJA generated
         by this element.
@@ -949,9 +1027,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: set_random_seed()
             sage: x0 = random_eja().random_element()
             sage: A = x0.subalgebra_generated_by()
-            sage: x = A.random_element()
-            sage: y = A.random_element()
-            sage: z = A.random_element()
+            sage: x,y,z = A.random_elements(3)
             sage: (x*y)*z == x*(y*z)
             True
 
@@ -969,12 +1045,12 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             sage: set_random_seed()
             sage: A = random_eja().zero().subalgebra_generated_by()
             sage: A
-            Euclidean Jordan algebra of dimension 0 over Rational Field
+            Euclidean Jordan algebra of dimension 0 over...
             sage: A.one()
             0
 
         """
-        return FiniteDimensionalEuclideanJordanElementSubalgebra(self)
+        return FiniteDimensionalEuclideanJordanElementSubalgebra(self, orthonormalize_basis)
 
 
     def subalgebra_idempotent(self):
@@ -1062,7 +1138,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: J.random_element().trace() in J.base_ring()
+            sage: J.random_element().trace() in RLF
             True
 
         """
@@ -1086,22 +1162,16 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
 
         TESTS:
 
-        The trace inner product is commutative::
+        The trace inner product is commutative, bilinear, and associative::
 
             sage: set_random_seed()
             sage: J = random_eja()
-            sage: x = J.random_element(); y = J.random_element()
+            sage: x,y,z = J.random_elements(3)
+            sage: # commutative
             sage: x.trace_inner_product(y) == y.trace_inner_product(x)
             True
-
-        The trace inner product is bilinear::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
-            sage: a = QQ.random_element();
+            sage: # bilinear
+            sage: a = J.base_ring().random_element();
             sage: actual = (a*(x+z)).trace_inner_product(y)
             sage: expected = ( a*x.trace_inner_product(y) +
             ....:              a*z.trace_inner_product(y) )
@@ -1112,15 +1182,7 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             ....:              a*x.trace_inner_product(z) )
             sage: actual == expected
             True
-
-        The trace inner product satisfies the compatibility
-        condition in the definition of a Euclidean Jordan algebra::
-
-            sage: set_random_seed()
-            sage: J = random_eja()
-            sage: x = J.random_element()
-            sage: y = J.random_element()
-            sage: z = J.random_element()
+            sage: # associative
             sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
             True
 
@@ -1129,3 +1191,30 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement):
             raise TypeError("'other' must live in the same algebra")
 
         return (self*other).trace()
+
+
+    def trace_norm(self):
+        """
+        The norm of this element with respect to :meth:`trace_inner_product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(2)
+            sage: x = sum(J.gens())
+            sage: x.trace_norm()
+            sqrt(2)
+
+        ::
+
+            sage: J = JordanSpinEJA(4)
+            sage: x = sum(J.gens())
+            sage: x.trace_norm()
+            2*sqrt(2)
+
+        """
+        return self.trace_inner_product(self).sqrt()