]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_element.py
eja: don't pointlessly orthonormalize in subalgebra_idempotent().
[sage.d.git] / mjo / eja / eja_element.py
index bc253d48653c40bddb3180e083daf6b61e9f3dac..235047a153f0594bf450987ae2988a5873d92f36 100644 (file)
@@ -795,7 +795,23 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
 
         ALGORITHM:
 
-        .........
+        First we handle the special cases where the algebra is
+        trivial, this element is zero, or the dimension of the algebra
+        is one and this element is not zero. With those out of the
+        way, we may assume that ``self`` is nonzero, the algebra is
+        nontrivial, and that the dimension of the algebra is at least
+        two.
+
+        Beginning with the algebra's unit element (power zero), we add
+        successive (basis representations of) powers of this element
+        to a matrix, row-reducing at each step. After row-reducing, we
+        check the rank of the matrix. If adding a row and row-reducing
+        does not increase the rank of the matrix at any point, the row
+        we've just added lives in the span of the previous ones; thus
+        the corresponding power of ``self`` lives in the span of its
+        lesser powers. When that happens, the degree of the minimal
+        polynomial is the rank of the matrix; if it never happens, the
+        degree must be the dimension of the entire space.
 
         SETUP::
 
@@ -838,7 +854,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: x = random_eja().random_element()
             sage: x.degree() == x.minimal_polynomial().degree()
             True
-
         """
         n = self.parent().dimension()
 
@@ -1425,7 +1440,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         where there are non-nilpotent elements, or that we get the dumb
         solution in the trivial algebra::
 
-            sage: J = random_eja()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: x = J.random_element()
             sage: while x.is_nilpotent() and not J.is_trivial():
             ....:     x = J.random_element()
@@ -1440,7 +1455,10 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         if self.is_nilpotent():
             raise ValueError("this only works with non-nilpotent elements!")
 
-        J = self.subalgebra_generated_by()
+        # The subalgebra is transient (we return an element of the
+        # superalgebra, i.e. this algebra) so why bother
+        # orthonormalizing?
+        J = self.subalgebra_generated_by(orthonormalize=False)
         u = J(self)
 
         # The image of the matrix of left-u^m-multiplication
@@ -1461,14 +1479,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         # subspace... or do we? Can't we just solve, knowing that
         # A(c) = u^(s+1) should have a solution in the big space,
         # too?
-        #
-        # Beware, solve_right() means that we're using COLUMN vectors.
-        # Our FiniteDimensionalAlgebraElement superclass uses rows.
         u_next = u**(s+1)
         A = u_next.operator().matrix()
         c = J.from_vector(A.solve_right(u_next.to_vector()))
 
-        # Now c is the idempotent we want, but it still lives in the subalgebra.
+        # Now c is the idempotent we want, but it still lives in
+        # the subalgebra.
         return c.superalgebra_element()
 
 
@@ -1542,6 +1558,102 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         # we want the negative of THAT for the trace.
         return -p(*self.to_vector())
 
+    def operator_inner_product(self, other):
+        r"""
+        Return the operator inner product of myself and ``other``.
+
+        The "operator inner product," whose name is not standard, is
+        defined be the usual linear-algebraic trace of the
+        ``(x*y).operator()``.
+
+        Proposition III.1.5 in Faraut and Korányi shows that on any
+        Euclidean Jordan algebra, this is another associative inner
+        product under which the cone of squares is symmetric.
+
+        This *probably* works even if the basis hasn't been
+        orthonormalized because the eigenvalues of the corresponding
+        matrix don't change when the basis does (they're preserved by
+        any similarity transformation).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES:
+
+        Proposition III.4.2 of Faraut and Korányi shows that on a
+        simple algebra of rank `r` and dimension `n`, this inner
+        product is `n/r` times the canonical
+        :meth:`trace_inner_product`::
+
+            sage: J = JordanSpinEJA(4, field=QQ)
+            sage: x,y = J.random_elements(2)
+            sage: n = J.dimension()
+            sage: r = J.rank()
+            sage: actual = x.operator_inner_product(y)
+            sage: expected = (n/r)*x.trace_inner_product(y)
+            sage: actual == expected
+            True
+
+        ::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x,y = J.random_elements(2)
+            sage: n = J.dimension()
+            sage: r = J.rank()
+            sage: actual = x.operator_inner_product(y)
+            sage: expected = (n/r)*x.trace_inner_product(y)
+            sage: actual == expected
+            True
+
+        ::
+
+            sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
+            sage: x,y = J.random_elements(2)
+            sage: n = J.dimension()
+            sage: r = J.rank()
+            sage: actual = x.operator_inner_product(y)
+            sage: expected = (n/r)*x.trace_inner_product(y)
+            sage: actual == expected
+            True
+
+        TESTS:
+
+        The operator inner product is commutative, bilinear, and
+        associative::
+
+            sage: J = random_eja()
+            sage: x,y,z = J.random_elements(3)
+            sage: # commutative
+            sage: x.operator_inner_product(y) == y.operator_inner_product(x)
+            True
+            sage: # bilinear
+            sage: a = J.base_ring().random_element()
+            sage: actual = (a*(x+z)).operator_inner_product(y)
+            sage: expected = ( a*x.operator_inner_product(y) +
+            ....:              a*z.operator_inner_product(y) )
+            sage: actual == expected
+            True
+            sage: actual = x.operator_inner_product(a*(y+z))
+            sage: expected = ( a*x.operator_inner_product(y) +
+            ....:              a*x.operator_inner_product(z) )
+            sage: actual == expected
+            True
+            sage: # associative
+            sage: actual = (x*y).operator_inner_product(z)
+            sage: expected = y.operator_inner_product(x*z)
+            sage: actual == expected
+            True
+
+        """
+        if not other in self.parent():
+            raise TypeError("'other' must live in the same algebra")
+
+        return (self*other).operator().matrix().trace()
+
 
     def trace_inner_product(self, other):
         """
@@ -1561,7 +1673,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: x.trace_inner_product(y) == y.trace_inner_product(x)
             True
             sage: # bilinear
-            sage: a = J.base_ring().random_element();
+            sage: a = J.base_ring().random_element()
             sage: actual = (a*(x+z)).trace_inner_product(y)
             sage: expected = ( a*x.trace_inner_product(y) +
             ....:              a*z.trace_inner_product(y) )