]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add and update a few docstrings and tests.
[sage.d.git] / mjo / eja / eja_algebra.py
index ec58b57e8d78b004bcdc0ffaa83fc773c3cfffa8..f88a5523bf7e63bc15608479bff6f05f63736936 100644 (file)
@@ -32,10 +32,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     def __classcall_private__(cls,
                               field,
                               mult_table,
+                              rank,
                               names='e',
                               assume_associative=False,
                               category=None,
-                              rank=None,
                               natural_basis=None):
         n = len(mult_table)
         mult_table = [b.base_extend(field) for b in mult_table]
@@ -56,20 +56,20 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         return fda.__classcall__(cls,
                                  field,
                                  mult_table,
+                                 rank=rank,
                                  assume_associative=assume_associative,
                                  names=names,
                                  category=cat,
-                                 rank=rank,
                                  natural_basis=natural_basis)
 
 
     def __init__(self,
                  field,
                  mult_table,
+                 rank,
                  names='e',
                  assume_associative=False,
                  category=None,
-                 rank=None,
                  natural_basis=None):
         """
         SETUP::
@@ -386,11 +386,61 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     def rank(self):
         """
         Return the rank of this EJA.
+
+        ALGORITHM:
+
+        The author knows of no algorithm to compute the rank of an EJA
+        where only the multiplication table is known. In lieu of one, we
+        require the rank to be specified when the algebra is created,
+        and simply pass along that number here.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES:
+
+        The rank of the Jordan spin algebra is always two::
+
+            sage: JordanSpinEJA(2).rank()
+            2
+            sage: JordanSpinEJA(3).rank()
+            2
+            sage: JordanSpinEJA(4).rank()
+            2
+
+        The rank of the `n`-by-`n` Hermitian real, complex, or
+        quaternion matrices is `n`::
+
+            sage: RealSymmetricEJA(2).rank()
+            2
+            sage: ComplexHermitianEJA(2).rank()
+            2
+            sage: QuaternionHermitianEJA(2).rank()
+            2
+            sage: RealSymmetricEJA(5).rank()
+            5
+            sage: ComplexHermitianEJA(5).rank()
+            5
+            sage: QuaternionHermitianEJA(5).rank()
+            5
+
+        TESTS:
+
+        Ensure that every EJA that we know how to construct has a
+        positive integer rank::
+
+            sage: set_random_seed()
+            sage: r = random_eja().rank()
+            sage: r in ZZ and r > 0
+            True
+
         """
-        if self._rank is None:
-            raise ValueError("no rank specified at genesis")
-        else:
-            return self._rank
+        return self._rank
 
 
     def vector_space(self):
@@ -431,7 +481,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             SETUP::
 
-                sage: from mjo.eja.eja_algebra import RealSymmetricEJA
+                sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+                ....:                                  random_eja)
 
             EXAMPLES:
 
@@ -451,6 +502,18 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 ...
                 ArithmeticError: vector is not in free module
 
+            TESTS:
+
+            Ensure that we can convert any element of the parent's
+            underlying vector space back into an algebra element whose
+            vector representation is what we started with::
+
+                sage: set_random_seed()
+                sage: J = random_eja()
+                sage: v = J.vector_space().random_element()
+                sage: J(v).vector() == v
+                True
+
             """
             # Goal: if we're given a matrix, and if it lives in our
             # parent algebra's "natural ambient space," convert it
@@ -483,21 +546,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Jordan algebras are always power-associative; see for
             example Faraut and Koranyi, Proposition II.1.2 (ii).
 
-            .. WARNING:
-
-                We have to override this because our superclass uses row vectors
-                instead of column vectors! We, on the other hand, assume column
-                vectors everywhere.
+            We have to override this because our superclass uses row
+            vectors instead of column vectors! We, on the other hand,
+            assume column vectors everywhere.
 
             SETUP::
 
                 sage: from mjo.eja.eja_algebra import random_eja
 
-            EXAMPLES::
+            TESTS:
+
+            The definition of `x^2` is the unambiguous `x*x`::
 
                 sage: set_random_seed()
                 sage: x = random_eja().random_element()
-                sage: x.operator()(x) == (x^2)
+                sage: x*x == (x^2)
                 True
 
             A few examples of power-associativity::
@@ -603,6 +666,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: J.zero().characteristic_polynomial()
                 t^3
 
+            TESTS:
+
             The characteristic polynomial of an element should evaluate
             to zero on that element::
 
@@ -720,8 +785,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: lhs == rhs
                 True
 
-            Test the first polarization identity from my notes, Koecher Chapter
-            III, or from Baes (2.3)::
+            Test the first polarization identity from my notes, Koecher
+            Chapter III, or from Baes (2.3)::
 
                 sage: set_random_seed()
                 sage: J = random_eja()
@@ -904,9 +969,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             """
             Return whether or not this element is invertible.
 
-            We can't use the superclass method because it relies on
-            the algebra being associative.
-
             ALGORITHM:
 
             The usual way to do this is to check if the determinant is
@@ -916,6 +978,9 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             whether or not the paren't algebra's zero element is a root
             of this element's minimal polynomial.
 
+            Beware that we can't use the superclass method, because it
+            relies on the algebra being associative.
+
             SETUP::
 
                 sage: from mjo.eja.eja_algebra import random_eja
@@ -1414,7 +1479,17 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             # are power-associative.
             #
             # TODO: choose generator names intelligently.
-            return FiniteDimensionalEuclideanJordanAlgebra(F, mats, assume_associative=True, names='f')
+            #
+            # The rank is the highest possible degree of a minimal polynomial,
+            # and is bounded above by the dimension. We know in this case that
+            # there's an element whose minimal polynomial has the same degree
+            # as the space's dimension, so that must be its rank too.
+            return FiniteDimensionalEuclideanJordanAlgebra(
+                     F,
+                     mats,
+                     V.dimension(),
+                     assume_associative=True,
+                     names='f')
 
 
         def subalgebra_idempotent(self):