]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add a soon-TODO.
[sage.d.git] / mjo / eja / eja_algebra.py
index 2c68c8cdd1ff8eb5c3a1a90ccac7d3987bdfbce0..eca279f68156ef1cd8e407f2f8ad25661af1e517 100644 (file)
@@ -133,7 +133,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             deortho_vector_basis = tuple( V(b.list()) for b in basis )
 
             from mjo.eja.eja_utils import gram_schmidt
-            basis = gram_schmidt(basis, inner_product)
+            basis = tuple(gram_schmidt(basis, inner_product))
 
         # Save the (possibly orthonormalized) matrix basis for
         # later...
@@ -158,7 +158,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # Now we actually compute the multiplication and inner-product
         # tables/matrices using the possibly-orthonormalized basis.
-        self._inner_product_matrix = matrix.zero(field, n)
+        self._inner_product_matrix = matrix.identity(field, n)
         self._multiplication_table = [ [0 for j in range(i+1)]
                                        for i in range(n) ]
 
@@ -171,15 +171,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 q_i = basis[i]
                 q_j = basis[j]
 
-                elt = jordan_product(q_i, q_j)
-                ip = inner_product(q_i, q_j)
-
                 # The jordan product returns a matrixy answer, so we
                 # have to convert it to the algebra coordinates.
+                elt = jordan_product(q_i, q_j)
                 elt = W.coordinate_vector(V(elt.list()))
                 self._multiplication_table[i][j] = self.from_vector(elt)
-                self._inner_product_matrix[i,j] = ip
-                self._inner_product_matrix[j,i] = ip
+
+                if not orthonormalize:
+                    # If we're orthonormalizing the basis with respect
+                    # to an inner-product, then the inner-product
+                    # matrix with respect to the resulting basis is
+                    # just going to be the identity.
+                    ip = inner_product(q_i, q_j)
+                    self._inner_product_matrix[i,j] = ip
+                    self._inner_product_matrix[j,i] = ip
 
         self._inner_product_matrix._cache = {'hermitian': True}
         self._inner_product_matrix.set_immutable()
@@ -315,7 +320,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         This method should of course always return ``True``, unless
         this algebra was constructed with ``check_axioms=False`` and
-        passed an invalid multiplication table.
+        passed an invalid Jordan or inner-product.
         """
 
         # Used to check whether or not something is zero in an inexact
@@ -1187,9 +1192,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
                  jordan_product,
                  inner_product,
                  field=AA,
-                 orthonormalize=True,
                  check_field=True,
-                 check_axioms=True,
                  **kwargs):
 
         if check_field:
@@ -1212,15 +1215,13 @@ class RationalBasisEJA(FiniteDimensionalEJA):
                                        field=QQ,
                                        orthonormalize=False,
                                        check_field=False,
-                                       check_axioms=False,
-                                       **kwargs)
+                                       check_axioms=False)
 
         super().__init__(basis,
                          jordan_product,
                          inner_product,
                          field=field,
                          check_field=check_field,
-                         check_axioms=check_axioms,
                          **kwargs)
 
     @cached_method
@@ -1260,7 +1261,14 @@ class RationalBasisEJA(FiniteDimensionalEJA):
         a = ( a_i.change_ring(self.base_ring())
               for a_i in self._rational_algebra._charpoly_coefficients() )
 
-        # Now convert the coordinate variables back to the
+        if self._deortho_matrix is None:
+            # This can happen if our base ring was, say, AA and we
+            # chose not to (or didn't need to) orthonormalize. It's
+            # still faster to do the computations over QQ even if
+            # the numbers in the boxes stay the same.
+            return tuple(a)
+
+        # Otherwise, convert the coordinate variables back to the
         # deorthonormalized ones.
         R = self.coordinate_polynomial_ring()
         from sage.modules.free_module_element import vector
@@ -2311,10 +2319,21 @@ class BilinearFormEJA(ConcreteEJA):
         ....:              for j in range(n-1) ]
         sage: actual == expected
         True
+
     """
     def __init__(self, B, **kwargs):
-        if not B.is_positive_definite():
-            raise ValueError("bilinear form is not positive-definite")
+        # The matrix "B" is supplied by the user in most cases,
+        # so it makes sense to check whether or not its positive-
+        # definite unless we are specifically asked not to...
+        if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
+            if not B.is_positive_definite():
+                raise ValueError("bilinear form is not positive-definite")
+
+        # However, all of the other data for this EJA is computed
+        # by us in manner that guarantees the axioms are
+        # satisfied. So, again, unless we are specifically asked to
+        # verify things, we'll skip the rest of the checks.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         def inner_product(x,y):
             return (y.T*B*x)[0,0]
@@ -2325,13 +2344,9 @@ class BilinearFormEJA(ConcreteEJA):
             xbar = x[1:,0]
             y0 = y[0,0]
             ybar = y[1:,0]
-            z0 = (y.T*x)[0,0]
+            z0 = inner_product(y,x)
             zbar = y0*xbar + x0*ybar
-            return P([0] + zbar.list())
-
-        # We know this is a valid EJA, but will double-check
-        # if the user passes check_axioms=True.
-        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+            return P([z0] + zbar.list())
 
         n = B.nrows()
         column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )