]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: move away from using matrices as our "multiplication table."
[sage.d.git] / mjo / eja / eja_algebra.py
index fb840edb93ed564c7372eacac2e3b9913a4a2350..db1494681d054887781efc14acebd2f73653beb0 100644 (file)
@@ -5,9 +5,9 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
+from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
 from sage.misc.cachefunc import cached_method
 from sage.misc.prandom import choice
@@ -17,53 +17,16 @@ from sage.rings.number_field.number_field import QuadraticField
 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
 from sage.rings.rational_field import QQ
 from sage.structure.element import is_Matrix
-from sage.structure.category_object import normalize_names
 
 from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_utils import _vec2mat, _mat2vec
-
-class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
-    @staticmethod
-    def __classcall_private__(cls,
-                              field,
-                              mult_table,
-                              rank,
-                              names='e',
-                              assume_associative=False,
-                              category=None,
-                              natural_basis=None):
-        n = len(mult_table)
-        mult_table = [b.base_extend(field) for b in mult_table]
-        for b in mult_table:
-            b.set_immutable()
-            if not (is_Matrix(b) and b.dimensions() == (n, n)):
-                raise ValueError("input is not a multiplication table")
-        mult_table = tuple(mult_table)
-
-        cat = FiniteDimensionalAlgebrasWithBasis(field)
-        cat.or_subcategory(category)
-        if assume_associative:
-            cat = cat.Associative()
-
-        names = normalize_names(n, names)
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall__(cls,
-                                 field,
-                                 mult_table,
-                                 rank,
-                                 assume_associative=assume_associative,
-                                 names=names,
-                                 category=cat,
-                                 natural_basis=natural_basis)
-
+from mjo.eja.eja_utils import _mat2vec
 
+class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     def __init__(self,
                  field,
                  mult_table,
                  rank,
-                 names='e',
-                 assume_associative=False,
+                 prefix='e',
                  category=None,
                  natural_basis=None):
         """
@@ -85,12 +48,86 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         self._rank = rank
         self._natural_basis = natural_basis
-        self._multiplication_table = mult_table
+
+        if category is None:
+            category = FiniteDimensionalAlgebrasWithBasis(field).Unital()
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
-                     mult_table,
-                     names=names,
+                     range(len(mult_table)),
+                     prefix=prefix,
                      category=category)
+        self.print_options(bracket='')
+
+        # The multiplication table we're given is necessarily in terms
+        # of vectors, because we don't have an algebra yet for
+        # anything to be an element of. However, it's faster in the
+        # long run to have the multiplication table be in terms of
+        # algebra elements. We do this after calling the superclass
+        # constructor so that from_vector() knows what to do.
+        self._multiplication_table = [ map(lambda x: self.from_vector(x), ls)
+                                       for ls in mult_table ]
+
+
+    def _element_constructor_(self, elt):
+        """
+        Construct an element of this algebra from its natural
+        representation.
+
+        This gets called only after the parent element _call_ method
+        fails to find a coercion for the argument.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES:
+
+        The identity in `S^n` is converted to the identity in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: I = matrix.identity(QQ,3)
+            sage: J(I) == J.one()
+            True
+
+        This skew-symmetric matrix can't be represented in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: A = matrix(QQ,3, lambda i,j: i-j)
+            sage: J(A)
+            Traceback (most recent call last):
+            ...
+            ArithmeticError: vector is not in free module
+
+        TESTS:
+
+        Ensure that we can convert any element of the two non-matrix
+        simple algebras (whose natural representations are their usual
+        vector representations) back and forth faithfully::
+
+            sage: set_random_seed()
+            sage: J = RealCartesianProductEJA(5)
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+            sage: J = JordanSpinEJA(5)
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+
+        """
+        natural_basis = self.natural_basis()
+        if elt not in natural_basis[0].matrix_space():
+            raise ValueError("not a naturally-represented algebra element")
+
+        # Thanks for nothing! Matrix spaces aren't vector
+        # spaces in Sage, so we have to figure out its
+        # natural-basis coordinates ourselves.
+        V = VectorSpace(elt.base_ring(), elt.nrows()*elt.ncols())
+        W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
+        coords =  W.coordinate_vector(_mat2vec(elt))
+        return self.from_vector(coords)
 
 
     def _repr_(self):
@@ -111,9 +148,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Euclidean Jordan algebra of degree 3 over Real Double Field
 
         """
+        # TODO: change this to say "dimension" and fix all the tests.
         fmt = "Euclidean Jordan algebra of degree {} over {}"
-        return fmt.format(self.degree(), self.base_ring())
+        return fmt.format(self.dimension(), self.base_ring())
 
+    def product_on_basis(self, i, j):
+        return self._multiplication_table[i][j]
 
     def _a_regular_element(self):
         """
@@ -153,7 +193,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         z = self._a_regular_element()
         V = self.vector_space()
-        V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
+        V1 = V.span_of_basis( (z**k).to_vector() for k in range(self.rank()) )
         b =  (V1.basis() + V1.complement().basis())
         return V.span_of_basis(b)
 
@@ -205,11 +245,13 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         n = self.dimension()
 
         # Construct a new algebra over a multivariate polynomial ring...
-        names = ['X' + str(i) for i in range(1,n+1)]
+        names = tuple('X' + str(i) for i in range(1,n+1))
         R = PolynomialRing(self.base_ring(), names)
-        J = FiniteDimensionalEuclideanJordanAlgebra(R,
-                                                    self._multiplication_table,
-                                                    r)
+        # Hack around the fact that our multiplication table is in terms of
+        # algebra elements but the constructor wants it in terms of vectors.
+        vmt = [ tuple(map(lambda x: x.to_vector(), ls))
+                for ls in self._multiplication_table ]
+        J = FiniteDimensionalEuclideanJordanAlgebra(R, tuple(vmt), r)
 
         idmat = matrix.identity(J.base_ring(), n)
 
@@ -231,11 +273,17 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         # We want the middle equivalent thing in our matrix, but use
         # the first equivalent thing instead so that we can pass in
         # standard coordinates.
-        x = J(W(R.gens()))
-        l1 = [matrix.column(W.coordinates((x**k).vector())) for k in range(r)]
+        x = J.from_vector(W(R.gens()))
+
+        # Handle the zeroth power separately, because computing
+        # the unit element in J is mathematically suspect.
+        x0 = W.coordinate_vector(self.one().to_vector())
+        l1  = [ x0.column() ]
+        l1 += [ W.coordinate_vector((x**k).to_vector()).column()
+                for k in range(1,r) ]
         l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
         A_of_x = matrix.block(R, 1, n, (l1 + l2))
-        xr = W.coordinates((x**r).vector())
+        xr = W.coordinate_vector((x**r).to_vector())
         return (A_of_x, x, xr, A_of_x.det())
 
 
@@ -265,7 +313,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             sage: J = JordanSpinEJA(3)
             sage: p = J.characteristic_polynomial(); p
             X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
-            sage: xvec = J.one().vector()
+            sage: xvec = J.one().to_vector()
             sage: p(*xvec)
             t^2 - 2*t + 1
 
@@ -353,7 +401,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Family (e0, e1, e2)
+            Finite family {0: e0, 1: e1, 2: e2}
             sage: J.natural_basis()
             (
             [1 0]  [0 1]  [0 0]
@@ -364,7 +412,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Family (e0, e1)
+            Finite family {0: e0, 1: e1}
             sage: J.natural_basis()
             (
             [1]  [0]
@@ -373,11 +421,72 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         """
         if self._natural_basis is None:
-            return tuple( b.vector().column() for b in self.basis() )
+            return tuple( b.to_vector().column() for b in self.basis() )
         else:
             return self._natural_basis
 
 
+    @cached_method
+    def one(self):
+        """
+        Return the unit element of this algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+
+        TESTS::
+
+        The identity element acts like the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+
+        The matrix of the unit element's operator is the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+
+        """
+        # We can brute-force compute the matrices of the operators
+        # that correspond to the basis elements of this algebra.
+        # If some linear combination of those basis elements is the
+        # algebra identity, then the same linear combination of
+        # their matrices has to be the identity matrix.
+        #
+        # Of course, matrices aren't vectors in sage, so we have to
+        # appeal to the "long vectors" isometry.
+        oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
+
+        # Now we use basis linear algebra to find the coefficients,
+        # of the matrices-as-vectors-linear-combination, which should
+        # work for the original algebra basis too.
+        A = matrix.column(self.base_ring(), oper_vecs)
+
+        # We used the isometry on the left-hand side already, but we
+        # still need to do it for the right-hand side. Recall that we
+        # wanted something that summed to the identity matrix.
+        b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
+
+        # Now if there's an identity element in the algebra, this should work.
+        coeffs = A.solve_right(b)
+        return self.linear_combination(zip(self.gens(), coeffs))
+
+
     def rank(self):
         """
         Return the rank of this EJA.
@@ -453,7 +562,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Vector space of dimension 3 over Rational Field
 
         """
-        return self.zero().vector().parent().ambient_vector_space()
+        return self.zero().to_vector().parent().ambient_vector_space()
 
 
     Element = FiniteDimensionalEuclideanJordanAlgebraElement
@@ -492,18 +601,13 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
         e2
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        # The FiniteDimensionalAlgebra constructor takes a list of
-        # matrices, the ith representing right multiplication by the ith
-        # basis element in the vector space. So if e_1 = (1,0,0), then
-        # right (Hadamard) multiplication of x by e_1 picks out the first
-        # component of x; and likewise for the ith basis element e_i.
-        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
-               for i in xrange(n) ]
-
-        fdeja = super(RealCartesianProductEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+    def __init__(self, n, field=QQ):
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.basis()[i]*(i == j) for i in range(n) ]
+                       for j in range(n) ]
+
+        fdeja = super(RealCartesianProductEJA, self)
+        return fdeja.__init__(field, mult_table, rank=n)
 
     def inner_product(self, x, y):
         return _usual_ip(x,y)
@@ -674,10 +778,7 @@ def _multiplication_table_from_matrix_basis(basis):
     multiplication on the right is matrix multiplication. Given a basis
     for the underlying matrix space, this function returns a
     multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices. A reordered copy
-    of the basis is also returned to work around the fact that
-    the ``span()`` in this function will change the order of the basis
-    from what we think it is, to... something else.
+    elements) for an algebra of those matrices.
     """
     # In S^2, for example, we nominally have four coordinates even
     # though the space is of dimension three only. The vector space V
@@ -688,30 +789,15 @@ def _multiplication_table_from_matrix_basis(basis):
     dimension = basis[0].nrows()
 
     V = VectorSpace(field, dimension**2)
-    W = V.span( _mat2vec(s) for s in basis )
-
-    # Taking the span above reorders our basis (thanks, jerk!) so we
-    # need to put our "matrix basis" in the same order as the
-    # (reordered) vector basis.
-    S = tuple( _vec2mat(b) for b in W.basis() )
-
-    Qs = []
-    for s in S:
-        # Brute force the multiplication-by-s matrix by looping
-        # through all elements of the basis and doing the computation
-        # to find out what the corresponding row should be. BEWARE:
-        # these multiplication tables won't be symmetric! It therefore
-        # becomes REALLY IMPORTANT that the underlying algebra
-        # constructor uses ROW vectors and not COLUMN vectors. That's
-        # why we're computing rows here and not columns.
-        Q_rows = []
-        for t in S:
-            this_row = _mat2vec((s*t + t*s)/2)
-            Q_rows.append(W.coordinates(this_row))
-        Q = matrix(field, W.dimension(), Q_rows)
-        Qs.append(Q)
-
-    return (Qs, S)
+    W = V.span_of_basis( _mat2vec(s) for s in basis )
+    n = len(basis)
+    mult_table = [[W.zero() for i in range(n)] for j in range(n)]
+    for i in range(n):
+        for j in range(n):
+            mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
+            mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
+
+    return mult_table
 
 
 def _embed_complex_matrix(M):
@@ -942,7 +1028,7 @@ def _unembed_quaternion_matrix(M):
 
 # The usual inner product on R^n.
 def _usual_ip(x,y):
-    return x.vector().inner_product(y.vector())
+    return x.to_vector().inner_product(y.to_vector())
 
 # The inner product used for the real symmetric simple EJA.
 # We keep it as a separate function because e.g. the complex
@@ -976,12 +1062,12 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `(n^2 + n) / 2`::
+    The dimension of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = RealSymmetricEJA(n)
-        sage: J.degree() == (n^2 + n)/2
+        sage: J.dimension() == (n^2 + n)/2
         True
 
     The Jordan multiplication is what we think it is::
@@ -1001,17 +1087,15 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
         True
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
+    def __init__(self, n, field=QQ):
         S = _real_symmetric_basis(n, field=field)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+        Qs = _multiplication_table_from_matrix_basis(S)
 
-        fdeja = super(RealSymmetricEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        fdeja = super(RealSymmetricEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S)
 
     def inner_product(self, x, y):
         return _matrix_ip(x,y)
@@ -1030,12 +1114,12 @@ class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `n^2`::
+    The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = ComplexHermitianEJA(n)
-        sage: J.degree() == n^2
+        sage: J.dimension() == n^2
         True
 
     The Jordan multiplication is what we think it is::
@@ -1055,17 +1139,16 @@ class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
         True
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
+    def __init__(self, n, field=QQ):
         S = _complex_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+        Qs = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(ComplexHermitianEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S)
 
-        fdeja = super(ComplexHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
 
     def inner_product(self, x, y):
         # Since a+bi on the diagonal is represented as
@@ -1091,12 +1174,12 @@ class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `n^2`::
+    The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = QuaternionHermitianEJA(n)
-        sage: J.degree() == 2*(n^2) - n
+        sage: J.dimension() == 2*(n^2) - n
         True
 
     The Jordan multiplication is what we think it is::
@@ -1116,17 +1199,15 @@ class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
         True
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
+    def __init__(self, n, field=QQ):
         S = _quaternion_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+        Qs = _multiplication_table_from_matrix_basis(S)
 
-        fdeja = super(QuaternionHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        fdeja = super(QuaternionHermitianEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S)
 
     def inner_product(self, x, y):
         # Since a+bi+cj+dk on the diagonal is represented as
@@ -1174,26 +1255,28 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
         0
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        Qs = []
-        id_matrix = matrix.identity(field, n)
-        for i in xrange(n):
-            ei = id_matrix.column(i)
-            Qi = matrix.zero(field, n)
-            Qi.set_row(0, ei)
-            Qi.set_column(0, ei)
-            Qi += matrix.diagonal(n, [ei[0]]*n)
-            # The addition of the diagonal matrix adds an extra ei[0] in the
-            # upper-left corner of the matrix.
-            Qi[0,0] = Qi[0,0] * ~field(2)
-            Qs.append(Qi)
+    def __init__(self, n, field=QQ):
+        V = VectorSpace(field, n)
+        mult_table = [[V.zero() for i in range(n)] for j in range(n)]
+        for i in range(n):
+            for j in range(n):
+                x = V.basis()[i]
+                y = V.basis()[j]
+                x0 = x[0]
+                xbar = x[1:]
+                y0 = y[0]
+                ybar = y[1:]
+                # z = x*y
+                z0 = x.inner_product(y)
+                zbar = y0*xbar + x0*ybar
+                z = V([z0] + zbar.list())
+                mult_table[i][j] = z
 
         # The rank of the spin algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded by
         # the ambient dimension).
-        fdeja = super(JordanSpinEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+        fdeja = super(JordanSpinEJA, self)
+        return fdeja.__init__(field, mult_table, rank=min(n,2))
 
     def inner_product(self, x, y):
         return _usual_ip(x,y)