]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: don't waste time computing the unit element in subalgebras.
[sage.d.git] / mjo / eja / eja_algebra.py
index f88a5523bf7e63bc15608479bff6f05f63736936..d4ee9b022d8524752d3e15edf37284c2381ce509 100644 (file)
@@ -5,70 +5,28 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-
-
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
-from sage.functions.other import sqrt
+from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
 from sage.misc.cachefunc import cached_method
 from sage.misc.prandom import choice
 from sage.modules.free_module import VectorSpace
-from sage.modules.free_module_element import vector
 from sage.rings.integer_ring import ZZ
 from sage.rings.number_field.number_field import QuadraticField
 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
 from sage.rings.rational_field import QQ
 from sage.structure.element import is_Matrix
-from sage.structure.category_object import normalize_names
-
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
-
-
-class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
-    @staticmethod
-    def __classcall_private__(cls,
-                              field,
-                              mult_table,
-                              rank,
-                              names='e',
-                              assume_associative=False,
-                              category=None,
-                              natural_basis=None):
-        n = len(mult_table)
-        mult_table = [b.base_extend(field) for b in mult_table]
-        for b in mult_table:
-            b.set_immutable()
-            if not (is_Matrix(b) and b.dimensions() == (n, n)):
-                raise ValueError("input is not a multiplication table")
-        mult_table = tuple(mult_table)
-
-        cat = FiniteDimensionalAlgebrasWithBasis(field)
-        cat.or_subcategory(category)
-        if assume_associative:
-            cat = cat.Associative()
-
-        names = normalize_names(n, names)
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, cls)
-        return fda.__classcall__(cls,
-                                 field,
-                                 mult_table,
-                                 rank=rank,
-                                 assume_associative=assume_associative,
-                                 names=names,
-                                 category=cat,
-                                 natural_basis=natural_basis)
 
+from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_utils import _mat2vec
 
+class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
     def __init__(self,
                  field,
                  mult_table,
                  rank,
-                 names='e',
-                 assume_associative=False,
+                 prefix='e',
                  category=None,
                  natural_basis=None):
         """
@@ -90,12 +48,88 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         self._rank = rank
         self._natural_basis = natural_basis
-        self._multiplication_table = mult_table
+
+        if category is None:
+            category = FiniteDimensionalAlgebrasWithBasis(field).Unital()
         fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
         fda.__init__(field,
-                     mult_table,
-                     names=names,
+                     range(len(mult_table)),
+                     prefix=prefix,
                      category=category)
+        self.print_options(bracket='')
+
+        # The multiplication table we're given is necessarily in terms
+        # of vectors, because we don't have an algebra yet for
+        # anything to be an element of. However, it's faster in the
+        # long run to have the multiplication table be in terms of
+        # algebra elements. We do this after calling the superclass
+        # constructor so that from_vector() knows what to do.
+        self._multiplication_table = matrix(
+            [ map(lambda x: self.from_vector(x), ls)
+              for ls in mult_table ] )
+        self._multiplication_table.set_immutable()
+
+
+    def _element_constructor_(self, elt):
+        """
+        Construct an element of this algebra from its natural
+        representation.
+
+        This gets called only after the parent element _call_ method
+        fails to find a coercion for the argument.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES:
+
+        The identity in `S^n` is converted to the identity in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: I = matrix.identity(QQ,3)
+            sage: J(I) == J.one()
+            True
+
+        This skew-symmetric matrix can't be represented in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: A = matrix(QQ,3, lambda i,j: i-j)
+            sage: J(A)
+            Traceback (most recent call last):
+            ...
+            ArithmeticError: vector is not in free module
+
+        TESTS:
+
+        Ensure that we can convert any element of the two non-matrix
+        simple algebras (whose natural representations are their usual
+        vector representations) back and forth faithfully::
+
+            sage: set_random_seed()
+            sage: J = RealCartesianProductEJA(5)
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+            sage: J = JordanSpinEJA(5)
+            sage: x = J.random_element()
+            sage: J(x.to_vector().column()) == x
+            True
+
+        """
+        natural_basis = self.natural_basis()
+        if elt not in natural_basis[0].matrix_space():
+            raise ValueError("not a naturally-represented algebra element")
+
+        # Thanks for nothing! Matrix spaces aren't vector
+        # spaces in Sage, so we have to figure out its
+        # natural-basis coordinates ourselves.
+        V = VectorSpace(elt.base_ring(), elt.nrows()*elt.ncols())
+        W = V.span_of_basis( _mat2vec(s) for s in natural_basis )
+        coords =  W.coordinate_vector(_mat2vec(elt))
+        return self.from_vector(coords)
 
 
     def _repr_(self):
@@ -116,9 +150,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Euclidean Jordan algebra of degree 3 over Real Double Field
 
         """
+        # TODO: change this to say "dimension" and fix all the tests.
         fmt = "Euclidean Jordan algebra of degree {} over {}"
-        return fmt.format(self.degree(), self.base_ring())
+        return fmt.format(self.dimension(), self.base_ring())
 
+    def product_on_basis(self, i, j):
+        return self._multiplication_table[i,j]
 
     def _a_regular_element(self):
         """
@@ -158,7 +195,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         """
         z = self._a_regular_element()
         V = self.vector_space()
-        V1 = V.span_of_basis( (z**k).vector() for k in range(self.rank()) )
+        V1 = V.span_of_basis( (z**k).to_vector() for k in range(self.rank()) )
         b =  (V1.basis() + V1.complement().basis())
         return V.span_of_basis(b)
 
@@ -210,11 +247,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         n = self.dimension()
 
         # Construct a new algebra over a multivariate polynomial ring...
-        names = ['X' + str(i) for i in range(1,n+1)]
+        names = tuple('X' + str(i) for i in range(1,n+1))
         R = PolynomialRing(self.base_ring(), names)
-        J = FiniteDimensionalEuclideanJordanAlgebra(R,
-                                                    self._multiplication_table,
-                                                    rank=r)
+        # Hack around the fact that our multiplication table is in terms of
+        # algebra elements but the constructor wants it in terms of vectors.
+        vmt = [ tuple([ self._multiplication_table[i,j].to_vector()
+                        for j in range(self._multiplication_table.nrows()) ])
+                for i in range(self._multiplication_table.ncols()) ]
+        J = FiniteDimensionalEuclideanJordanAlgebra(R, tuple(vmt), r)
 
         idmat = matrix.identity(J.base_ring(), n)
 
@@ -236,11 +276,17 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         # We want the middle equivalent thing in our matrix, but use
         # the first equivalent thing instead so that we can pass in
         # standard coordinates.
-        x = J(W(R.gens()))
-        l1 = [matrix.column(W.coordinates((x**k).vector())) for k in range(r)]
+        x = J.from_vector(W(R.gens()))
+
+        # Handle the zeroth power separately, because computing
+        # the unit element in J is mathematically suspect.
+        x0 = W.coordinate_vector(self.one().to_vector())
+        l1  = [ x0.column() ]
+        l1 += [ W.coordinate_vector((x**k).to_vector()).column()
+                for k in range(1,r) ]
         l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)]
         A_of_x = matrix.block(R, 1, n, (l1 + l2))
-        xr = W.coordinates((x**r).vector())
+        xr = W.coordinate_vector((x**r).to_vector())
         return (A_of_x, x, xr, A_of_x.det())
 
 
@@ -270,7 +316,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             sage: J = JordanSpinEJA(3)
             sage: p = J.characteristic_polynomial(); p
             X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
-            sage: xvec = J.one().vector()
+            sage: xvec = J.one().to_vector()
             sage: p(*xvec)
             t^2 - 2*t + 1
 
@@ -336,6 +382,41 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         return x.trace_inner_product(y)
 
 
+    def multiplication_table(self):
+        """
+        Return a readable matrix representation of this algebra's
+        multiplication table. The (i,j)th entry in the matrix contains
+        the product of the ith basis element with the jth.
+
+        This is not extraordinarily useful, but it overrides a superclass
+        method that would otherwise just crash and complain about the
+        algebra being infinite.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(3)
+            sage: J.multiplication_table()
+            [e0  0  0]
+            [ 0 e1  0]
+            [ 0  0 e2]
+
+        ::
+
+            sage: J = JordanSpinEJA(3)
+            sage: J.multiplication_table()
+            [e0 e1 e2]
+            [e1 e0  0]
+            [e2  0 e0]
+
+        """
+        return self._multiplication_table
+
+
     def natural_basis(self):
         """
         Return a more-natural representation of this algebra's basis.
@@ -358,7 +439,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Family (e0, e1, e2)
+            Finite family {0: e0, 1: e1, 2: e2}
             sage: J.natural_basis()
             (
             [1 0]  [0 1]  [0 0]
@@ -369,7 +450,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Family (e0, e1)
+            Finite family {0: e0, 1: e1}
             sage: J.natural_basis()
             (
             [1]  [0]
@@ -378,11 +459,72 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         """
         if self._natural_basis is None:
-            return tuple( b.vector().column() for b in self.basis() )
+            return tuple( b.to_vector().column() for b in self.basis() )
         else:
             return self._natural_basis
 
 
+    @cached_method
+    def one(self):
+        """
+        Return the unit element of this algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one()
+            e0 + e1 + e2 + e3 + e4
+
+        TESTS:
+
+        The identity element acts like the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+
+        The matrix of the unit element's operator is the identity::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+
+        """
+        # We can brute-force compute the matrices of the operators
+        # that correspond to the basis elements of this algebra.
+        # If some linear combination of those basis elements is the
+        # algebra identity, then the same linear combination of
+        # their matrices has to be the identity matrix.
+        #
+        # Of course, matrices aren't vectors in sage, so we have to
+        # appeal to the "long vectors" isometry.
+        oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
+
+        # Now we use basis linear algebra to find the coefficients,
+        # of the matrices-as-vectors-linear-combination, which should
+        # work for the original algebra basis too.
+        A = matrix.column(self.base_ring(), oper_vecs)
+
+        # We used the isometry on the left-hand side already, but we
+        # still need to do it for the right-hand side. Recall that we
+        # wanted something that summed to the identity matrix.
+        b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
+
+        # Now if there's an identity element in the algebra, this should work.
+        coeffs = A.solve_right(b)
+        return self.linear_combination(zip(self.gens(), coeffs))
+
+
     def rank(self):
         """
         Return the rank of this EJA.
@@ -458,1201 +600,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             Vector space of dimension 3 over Rational Field
 
         """
-        return self.zero().vector().parent().ambient_vector_space()
-
-
-    class Element(FiniteDimensionalAlgebraElement):
-        """
-        An element of a Euclidean Jordan algebra.
-        """
-
-        def __dir__(self):
-            """
-            Oh man, I should not be doing this. This hides the "disabled"
-            methods ``left_matrix`` and ``matrix`` from introspection;
-            in particular it removes them from tab-completion.
-            """
-            return filter(lambda s: s not in ['left_matrix', 'matrix'],
-                          dir(self.__class__) )
-
-
-        def __init__(self, A, elt=None):
-            """
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The identity in `S^n` is converted to the identity in the EJA::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: I = matrix.identity(QQ,3)
-                sage: J(I) == J.one()
-                True
-
-            This skew-symmetric matrix can't be represented in the EJA::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: A = matrix(QQ,3, lambda i,j: i-j)
-                sage: J(A)
-                Traceback (most recent call last):
-                ...
-                ArithmeticError: vector is not in free module
-
-            TESTS:
-
-            Ensure that we can convert any element of the parent's
-            underlying vector space back into an algebra element whose
-            vector representation is what we started with::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: v = J.vector_space().random_element()
-                sage: J(v).vector() == v
-                True
-
-            """
-            # Goal: if we're given a matrix, and if it lives in our
-            # parent algebra's "natural ambient space," convert it
-            # into an algebra element.
-            #
-            # The catch is, we make a recursive call after converting
-            # the given matrix into a vector that lives in the algebra.
-            # This we need to try the parent class initializer first,
-            # to avoid recursing forever if we're given something that
-            # already fits into the algebra, but also happens to live
-            # in the parent's "natural ambient space" (this happens with
-            # vectors in R^n).
-            try:
-                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
-            except ValueError:
-                natural_basis = A.natural_basis()
-                if elt in natural_basis[0].matrix_space():
-                    # Thanks for nothing! Matrix spaces aren't vector
-                    # spaces in Sage, so we have to figure out its
-                    # natural-basis coordinates ourselves.
-                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
-                    W = V.span( _mat2vec(s) for s in natural_basis )
-                    coords =  W.coordinates(_mat2vec(elt))
-                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
-
-        def __pow__(self, n):
-            """
-            Return ``self`` raised to the power ``n``.
-
-            Jordan algebras are always power-associative; see for
-            example Faraut and Koranyi, Proposition II.1.2 (ii).
-
-            We have to override this because our superclass uses row
-            vectors instead of column vectors! We, on the other hand,
-            assume column vectors everywhere.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The definition of `x^2` is the unambiguous `x*x`::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*x == (x^2)
-                True
-
-            A few examples of power-associativity::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*(x*x)*(x*x) == x^5
-                True
-                sage: (x*x)*(x*x*x) == x^5
-                True
-
-            We also know that powers operator-commute (Koecher, Chapter
-            III, Corollary 1)::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: m = ZZ.random_element(0,10)
-                sage: n = ZZ.random_element(0,10)
-                sage: Lxm = (x^m).operator()
-                sage: Lxn = (x^n).operator()
-                sage: Lxm*Lxn == Lxn*Lxm
-                True
-
-            """
-            if n == 0:
-                return self.parent().one()
-            elif n == 1:
-                return self
-            else:
-                return (self.operator()**(n-1))(self)
-
-
-        def apply_univariate_polynomial(self, p):
-            """
-            Apply the univariate polynomial ``p`` to this element.
-
-            A priori, SageMath won't allow us to apply a univariate
-            polynomial to an element of an EJA, because we don't know
-            that EJAs are rings (they are usually not associative). Of
-            course, we know that EJAs are power-associative, so the
-            operation is ultimately kosher. This function sidesteps
-            the CAS to get the answer we want and expect.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: R = PolynomialRing(QQ, 't')
-                sage: t = R.gen(0)
-                sage: p = t^4 - t^3 + 5*t - 2
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
-                True
+        return self.zero().to_vector().parent().ambient_vector_space()
 
-            TESTS:
 
-            We should always get back an element of the algebra::
-
-                sage: set_random_seed()
-                sage: p = PolynomialRing(QQ, 't').random_element()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: x.apply_univariate_polynomial(p) in J
-                True
-
-            """
-            if len(p.variables()) > 1:
-                raise ValueError("not a univariate polynomial")
-            P = self.parent()
-            R = P.base_ring()
-            # Convert the coeficcients to the parent's base ring,
-            # because a priori they might live in an (unnecessarily)
-            # larger ring for which P.sum() would fail below.
-            cs = [ R(c) for c in p.coefficients(sparse=False) ]
-            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
-
-
-        def characteristic_polynomial(self):
-            """
-            Return the characteristic polynomial of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
-
-            EXAMPLES:
-
-            The rank of `R^3` is three, and the minimal polynomial of
-            the identity element is `(t-1)` from which it follows that
-            the characteristic polynomial should be `(t-1)^3`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.one().characteristic_polynomial()
-                t^3 - 3*t^2 + 3*t - 1
-
-            Likewise, the characteristic of the zero element in the
-            rank-three algebra `R^{n}` should be `t^{3}`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.zero().characteristic_polynomial()
-                t^3
-
-            TESTS:
-
-            The characteristic polynomial of an element should evaluate
-            to zero on that element::
-
-                sage: set_random_seed()
-                sage: x = RealCartesianProductEJA(3).random_element()
-                sage: p = x.characteristic_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            p = self.parent().characteristic_polynomial()
-            return p(*self.vector())
-
-
-        def inner_product(self, other):
-            """
-            Return the parent algebra's inner product of myself and ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (
-                ....:   ComplexHermitianEJA,
-                ....:   JordanSpinEJA,
-                ....:   QuaternionHermitianEJA,
-                ....:   RealSymmetricEJA,
-                ....:   random_eja)
-
-            EXAMPLES:
-
-            The inner product in the Jordan spin algebra is the usual
-            inner product on `R^n` (this example only works because the
-            basis for the Jordan algebra is the standard basis in `R^n`)::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = vector(QQ,[1,2,3])
-                sage: y = vector(QQ,[4,5,6])
-                sage: x.inner_product(y)
-                32
-                sage: J(x).inner_product(J(y))
-                32
-
-            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
-            multiplication is the usual matrix multiplication in `S^n`,
-            so the inner product of the identity matrix with itself
-            should be the `n`::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Likewise, the inner product on `C^n` is `<X,Y> =
-            Re(trace(X*Y))`, where we must necessarily take the real
-            part because the product of Hermitian matrices may not be
-            Hermitian::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Ditto for the quaternions::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            TESTS:
-
-            Ensure that we can always compute an inner product, and that
-            it gives us back a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.inner_product(y) in RR
-                True
-
-            """
-            P = self.parent()
-            if not other in P:
-                raise TypeError("'other' must live in the same algebra")
-
-            return P.inner_product(self, other)
-
-
-        def operator_commutes_with(self, other):
-            """
-            Return whether or not this element operator-commutes
-            with ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            EXAMPLES:
-
-            The definition of a Jordan algebra says that any element
-            operator-commutes with its square::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.operator_commutes_with(x^2)
-                True
-
-            TESTS:
-
-            Test Lemma 1 from Chapter III of Koecher::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: v = J.random_element()
-                sage: lhs = u.operator_commutes_with(u*v)
-                sage: rhs = v.operator_commutes_with(u^2)
-                sage: lhs == rhs
-                True
-
-            Test the first polarization identity from my notes, Koecher
-            Chapter III, or from Baes (2.3)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Lxy = (x*y).operator()
-                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
-                True
-
-            Test the second polarization identity from my notes or from
-            Baes (2.4)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Lxy = (x*y).operator()
-                sage: Lxz = (x*z).operator()
-                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
-                True
-
-            Test the third polarization identity from my notes or from
-            Baes (2.5)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lu = u.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Luy = (u*y).operator()
-                sage: Luz = (u*z).operator()
-                sage: Luyz = (u*(y*z)).operator()
-                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
-                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
-                sage: bool(lhs == rhs)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            A = self.operator()
-            B = other.operator()
-            return (A*B == B*A)
-
-
-        def det(self):
-            """
-            Return my determinant, the product of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(2)
-                sage: e0,e1 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                0
-
-            ::
-
-                sage: J = JordanSpinEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                -1
-
-            TESTS:
-
-            An element is invertible if and only if its determinant is
-            non-zero::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.is_invertible() == (x.det() != 0)
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(0)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(0) is really what
-            # appears in front of t^{0} in the charpoly. However,
-            # we want (-1)^r times THAT for the determinant.
-            return ((-1)**r)*p(*self.vector())
-
-
-        def inverse(self):
-            """
-            Return the Jordan-multiplicative inverse of this element.
-
-            ALGORITHM:
-
-            We appeal to the quadratic representation as in Koecher's
-            Theorem 12 in Chapter III, Section 5.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The inverse in the spin factor algebra is given in Alizadeh's
-            Example 11.11::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: while not x.is_invertible():
-                ....:     x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
-                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
-                sage: x_inverse = coeff*inv_vec
-                sage: x.inverse() == J(x_inverse)
-                True
-
-            TESTS:
-
-            The identity element is its own inverse::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().inverse() == J.one()
-                True
-
-            If an element has an inverse, it acts like one::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
-                True
-
-            The inverse of the inverse is what we started with::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
-                True
-
-            The zero element is never invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja().zero().inverse()
-                Traceback (most recent call last):
-                ...
-                ValueError: element is not invertible
-
-            """
-            if not self.is_invertible():
-                raise ValueError("element is not invertible")
-
-            return (~self.quadratic_representation())(self)
-
-
-        def is_invertible(self):
-            """
-            Return whether or not this element is invertible.
-
-            ALGORITHM:
-
-            The usual way to do this is to check if the determinant is
-            zero, but we need the characteristic polynomial for the
-            determinant. The minimal polynomial is a lot easier to get,
-            so we use Corollary 2 in Chapter V of Koecher to check
-            whether or not the paren't algebra's zero element is a root
-            of this element's minimal polynomial.
-
-            Beware that we can't use the superclass method, because it
-            relies on the algebra being associative.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The identity element is always invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().is_invertible()
-                True
-
-            The zero element is never invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_invertible()
-                False
-
-            """
-            zero = self.parent().zero()
-            p = self.minimal_polynomial()
-            return not (p(zero) == zero)
-
-
-        def is_nilpotent(self):
-            """
-            Return whether or not some power of this element is zero.
-
-            The superclass method won't work unless we're in an
-            associative algebra, and we aren't. However, we generate
-            an assocoative subalgebra and we're nilpotent there if and
-            only if we're nilpotent here (probably).
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The identity element is never nilpotent::
-
-                sage: set_random_seed()
-                sage: random_eja().one().is_nilpotent()
-                False
-
-            The additive identity is always nilpotent::
-
-                sage: set_random_seed()
-                sage: random_eja().zero().is_nilpotent()
-                True
-
-            """
-            # The element we're going to call "is_nilpotent()" on.
-            # Either myself, interpreted as an element of a finite-
-            # dimensional algebra, or an element of an associative
-            # subalgebra.
-            elt = None
-
-            if self.parent().is_associative():
-                elt = FiniteDimensionalAlgebraElement(self.parent(), self)
-            else:
-                V = self.span_of_powers()
-                assoc_subalg = self.subalgebra_generated_by()
-                # Mis-design warning: the basis used for span_of_powers()
-                # and subalgebra_generated_by() must be the same, and in
-                # the same order!
-                elt = assoc_subalg(V.coordinates(self.vector()))
-
-            # Recursive call, but should work since elt lives in an
-            # associative algebra.
-            return elt.is_nilpotent()
-
-
-        def is_regular(self):
-            """
-            Return whether or not this is a regular element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import JordanSpinEJA
-
-            EXAMPLES:
-
-            The identity element always has degree one, but any element
-            linearly-independent from it is regular::
-
-                sage: J = JordanSpinEJA(5)
-                sage: J.one().is_regular()
-                False
-                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
-                sage: for x in J.gens():
-                ....:     (J.one() + x).is_regular()
-                False
-                True
-                True
-                True
-                True
-
-            """
-            return self.degree() == self.parent().rank()
-
-
-        def degree(self):
-            """
-            Compute the degree of this element the straightforward way
-            according to the definition; by appending powers to a list
-            and figuring out its dimension (that is, whether or not
-            they're linearly dependent).
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import JordanSpinEJA
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(4)
-                sage: J.one().degree()
-                1
-                sage: e0,e1,e2,e3 = J.gens()
-                sage: (e0 - e1).degree()
-                2
-
-            In the spin factor algebra (of rank two), all elements that
-            aren't multiples of the identity are regular::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
-                True
-
-            """
-            return self.span_of_powers().dimension()
-
-
-        def left_matrix(self):
-            """
-            Our parent class defines ``left_matrix`` and ``matrix``
-            methods whose names are misleading. We don't want them.
-            """
-            raise NotImplementedError("use operator().matrix() instead")
-
-        matrix = left_matrix
-
-
-        def minimal_polynomial(self):
-            """
-            Return the minimal polynomial of this element,
-            as a function of the variable `t`.
-
-            ALGORITHM:
-
-            We restrict ourselves to the associative subalgebra
-            generated by this element, and then return the minimal
-            polynomial of this element's operator matrix (in that
-            subalgebra). This works by Baes Proposition 2.3.16.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            TESTS:
-
-            The minimal polynomial of the identity and zero elements are
-            always the same::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().minimal_polynomial()
-                t - 1
-                sage: J.zero().minimal_polynomial()
-                t
-
-            The degree of an element is (by one definition) the degree
-            of its minimal polynomial::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinEJA(n)
-                sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
-                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
-                True
-
-            The minimal polynomial should always kill its element::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: p = x.minimal_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            V = self.span_of_powers()
-            assoc_subalg = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            elt = assoc_subalg(V.coordinates(self.vector()))
-            return elt.operator().minimal_polynomial()
-
-
-
-        def natural_representation(self):
-            """
-            Return a more-natural representation of this element.
-
-            Every finite-dimensional Euclidean Jordan Algebra is a
-            direct sum of five simple algebras, four of which comprise
-            Hermitian matrices. This method returns the original
-            "natural" representation of this element as a Hermitian
-            matrix, if it has one. If not, you get the usual representation.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-                ....:                                  QuaternionHermitianEJA)
-
-            EXAMPLES::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one()
-                e0 + e5 + e8
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0]
-                [0 1 0 0 0 0]
-                [0 0 1 0 0 0]
-                [0 0 0 1 0 0]
-                [0 0 0 0 1 0]
-                [0 0 0 0 0 1]
-
-            ::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one()
-                e0 + e9 + e14
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0 0 0 0 0 0 0]
-                [0 1 0 0 0 0 0 0 0 0 0 0]
-                [0 0 1 0 0 0 0 0 0 0 0 0]
-                [0 0 0 1 0 0 0 0 0 0 0 0]
-                [0 0 0 0 1 0 0 0 0 0 0 0]
-                [0 0 0 0 0 1 0 0 0 0 0 0]
-                [0 0 0 0 0 0 1 0 0 0 0 0]
-                [0 0 0 0 0 0 0 1 0 0 0 0]
-                [0 0 0 0 0 0 0 0 1 0 0 0]
-                [0 0 0 0 0 0 0 0 0 1 0 0]
-                [0 0 0 0 0 0 0 0 0 0 1 0]
-                [0 0 0 0 0 0 0 0 0 0 0 1]
-
-            """
-            B = self.parent().natural_basis()
-            W = B[0].matrix_space()
-            return W.linear_combination(zip(self.vector(), B))
-
-
-        def operator(self):
-            """
-            Return the left-multiplication-by-this-element
-            operator on the ambient algebra.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.operator()(y) == x*y
-                True
-                sage: y.operator()(x) == x*y
-                True
-
-            """
-            P = self.parent()
-            fda_elt = FiniteDimensionalAlgebraElement(P, self)
-            return FiniteDimensionalEuclideanJordanAlgebraOperator(
-                     P,
-                     P,
-                     fda_elt.matrix().transpose() )
-
-
-        def quadratic_representation(self, other=None):
-            """
-            Return the quadratic representation of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The explicit form in the spin factor algebra is given by
-            Alizadeh's Example 11.12::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
-                sage: B = 2*x0*x_bar.row()
-                sage: C = 2*x0*x_bar.column()
-                sage: D = matrix.identity(QQ, n-1)
-                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
-                sage: D = D + 2*x_bar.tensor_product(x_bar)
-                sage: Q = matrix.block(2,2,[A,B,C,D])
-                sage: Q == x.quadratic_representation().matrix()
-                True
-
-            Test all of the properties from Theorem 11.2 in Alizadeh::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Qx = x.quadratic_representation()
-                sage: Qy = y.quadratic_representation()
-                sage: Qxy = x.quadratic_representation(y)
-                sage: Qex = J.one().quadratic_representation(x)
-                sage: n = ZZ.random_element(10)
-                sage: Qxn = (x^n).quadratic_representation()
-
-            Property 1:
-
-                sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
-                True
-
-            Property 2 (multiply on the right for :trac:`28272`):
-
-                sage: alpha = QQ.random_element()
-                sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
-                True
-
-            Property 3:
-
-                sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
-                True
-
-                sage: not x.is_invertible() or (
-                ....:   ~Qx
-                ....:   ==
-                ....:   x.inverse().quadratic_representation() )
-                True
-
-                sage: Qxy(J.one()) == x*y
-                True
-
-            Property 4:
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   == Qx*x.quadratic_representation(x.inverse()) )
-                True
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   ==
-                ....:   2*x.operator()*Qex - Qx )
-                True
-
-                sage: 2*x.operator()*Qex - Qx == Lxx
-                True
-
-            Property 5:
-
-                sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
-                True
-
-            Property 6:
-
-                sage: Qxn == (Qx)^n
-                True
-
-            Property 7:
-
-                sage: not x.is_invertible() or (
-                ....:   Qx*x.inverse().operator() == Lx )
-                True
-
-            Property 8:
-
-                sage: not x.operator_commutes_with(y) or (
-                ....:   Qx(y)^n == Qxn(y^n) )
-                True
-
-            """
-            if other is None:
-                other=self
-            elif not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            L = self.operator()
-            M = other.operator()
-            return ( L*M + M*L - (self*other).operator() )
-
-
-        def span_of_powers(self):
-            """
-            Return the vector space spanned by successive powers of
-            this element.
-            """
-            # The dimension of the subalgebra can't be greater than
-            # the big algebra, so just put everything into a list
-            # and let span() get rid of the excess.
-            #
-            # We do the extra ambient_vector_space() in case we're messing
-            # with polynomials and the direct parent is a module.
-            V = self.parent().vector_space()
-            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
-
-        def subalgebra_generated_by(self):
-            """
-            Return the associative subalgebra of the parent EJA generated
-            by this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-
-            Squaring in the subalgebra should work the same as in
-            the superalgebra::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.operator()(u) == u^2
-                True
-
-            """
-            # First get the subspace spanned by the powers of myself...
-            V = self.span_of_powers()
-            F = self.base_ring()
-
-            # Now figure out the entries of the right-multiplication
-            # matrix for the successive basis elements b0, b1,... of
-            # that subspace.
-            mats = []
-            for b_right in V.basis():
-                eja_b_right = self.parent()(b_right)
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in V.basis():
-                    eja_b_left = self.parent()(b_left)
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mats.append(b_right_matrix)
-
-            # It's an algebra of polynomials in one element, and EJAs
-            # are power-associative.
-            #
-            # TODO: choose generator names intelligently.
-            #
-            # The rank is the highest possible degree of a minimal polynomial,
-            # and is bounded above by the dimension. We know in this case that
-            # there's an element whose minimal polynomial has the same degree
-            # as the space's dimension, so that must be its rank too.
-            return FiniteDimensionalEuclideanJordanAlgebra(
-                     F,
-                     mats,
-                     V.dimension(),
-                     assume_associative=True,
-                     names='f')
-
-
-        def subalgebra_idempotent(self):
-            """
-            Find an idempotent in the associative subalgebra I generate
-            using Proposition 2.3.5 in Baes.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: while x.is_nilpotent():
-                ....:     x = J.random_element()
-                sage: c = x.subalgebra_idempotent()
-                sage: c^2 == c
-                True
-
-            """
-            if self.is_nilpotent():
-                raise ValueError("this only works with non-nilpotent elements!")
-
-            V = self.span_of_powers()
-            J = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            u = J(V.coordinates(self.vector()))
-
-            # The image of the matrix of left-u^m-multiplication
-            # will be minimal for some natural number s...
-            s = 0
-            minimal_dim = V.dimension()
-            for i in xrange(1, V.dimension()):
-                this_dim = (u**i).operator().matrix().image().dimension()
-                if this_dim < minimal_dim:
-                    minimal_dim = this_dim
-                    s = i
-
-            # Now minimal_matrix should correspond to the smallest
-            # non-zero subspace in Baes's (or really, Koecher's)
-            # proposition.
-            #
-            # However, we need to restrict the matrix to work on the
-            # subspace... or do we? Can't we just solve, knowing that
-            # A(c) = u^(s+1) should have a solution in the big space,
-            # too?
-            #
-            # Beware, solve_right() means that we're using COLUMN vectors.
-            # Our FiniteDimensionalAlgebraElement superclass uses rows.
-            u_next = u**(s+1)
-            A = u_next.operator().matrix()
-            c_coordinates = A.solve_right(u_next.vector())
-
-            # Now c_coordinates is the idempotent we want, but it's in
-            # the coordinate system of the subalgebra.
-            #
-            # We need the basis for J, but as elements of the parent algebra.
-            #
-            basis = [self.parent(v) for v in V.basis()]
-            return self.parent().linear_combination(zip(c_coordinates, basis))
-
-
-        def trace(self):
-            """
-            Return my trace, the sum of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  RealCartesianProductEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.trace()
-                2
-
-            ::
-
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().trace()
-                5
-
-            TESTS:
-
-            The trace of an element is a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.random_element().trace() in J.base_ring()
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(r-1)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(r-1) is really what
-            # appears in front of t^{r-1} in the charpoly. However,
-            # we want the negative of THAT for the trace.
-            return -p(*self.vector())
-
-
-        def trace_inner_product(self, other):
-            """
-            Return the trace inner product of myself and ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The trace inner product is commutative::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element(); y = J.random_element()
-                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-                True
-
-            The trace inner product is bilinear::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: a = QQ.random_element();
-                sage: actual = (a*(x+z)).trace_inner_product(y)
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*z.trace_inner_product(y) )
-                sage: actual == expected
-                True
-                sage: actual = x.trace_inner_product(a*(y+z))
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*x.trace_inner_product(z) )
-                sage: actual == expected
-                True
-
-            The trace inner product satisfies the compatibility
-            condition in the definition of a Euclidean Jordan algebra::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            return (self*other).trace()
+    Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
 
 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
@@ -1688,18 +639,13 @@ class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
         e2
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        # The FiniteDimensionalAlgebra constructor takes a list of
-        # matrices, the ith representing right multiplication by the ith
-        # basis element in the vector space. So if e_1 = (1,0,0), then
-        # right (Hadamard) multiplication of x by e_1 picks out the first
-        # component of x; and likewise for the ith basis element e_i.
-        Qs = [ matrix(field, n, n, lambda k,j: 1*(k == j == i))
-               for i in xrange(n) ]
-
-        fdeja = super(RealCartesianProductEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=n)
+    def __init__(self, n, field=QQ):
+        V = VectorSpace(field, n)
+        mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
+                       for i in range(n) ]
+
+        fdeja = super(RealCartesianProductEJA, self)
+        return fdeja.__init__(field, mult_table, rank=n)
 
     def inner_product(self, x, y):
         return _usual_ip(x,y)
@@ -1862,11 +808,6 @@ def _quaternion_hermitian_basis(n, field=QQ):
     return tuple(S)
 
 
-def _mat2vec(m):
-        return vector(m.base_ring(), m.list())
-
-def _vec2mat(v):
-        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
 
 def _multiplication_table_from_matrix_basis(basis):
     """
@@ -1875,10 +816,7 @@ def _multiplication_table_from_matrix_basis(basis):
     multiplication on the right is matrix multiplication. Given a basis
     for the underlying matrix space, this function returns a
     multiplication table (obtained by looping through the basis
-    elements) for an algebra of those matrices. A reordered copy
-    of the basis is also returned to work around the fact that
-    the ``span()`` in this function will change the order of the basis
-    from what we think it is, to... something else.
+    elements) for an algebra of those matrices.
     """
     # In S^2, for example, we nominally have four coordinates even
     # though the space is of dimension three only. The vector space V
@@ -1889,30 +827,15 @@ def _multiplication_table_from_matrix_basis(basis):
     dimension = basis[0].nrows()
 
     V = VectorSpace(field, dimension**2)
-    W = V.span( _mat2vec(s) for s in basis )
-
-    # Taking the span above reorders our basis (thanks, jerk!) so we
-    # need to put our "matrix basis" in the same order as the
-    # (reordered) vector basis.
-    S = tuple( _vec2mat(b) for b in W.basis() )
-
-    Qs = []
-    for s in S:
-        # Brute force the multiplication-by-s matrix by looping
-        # through all elements of the basis and doing the computation
-        # to find out what the corresponding row should be. BEWARE:
-        # these multiplication tables won't be symmetric! It therefore
-        # becomes REALLY IMPORTANT that the underlying algebra
-        # constructor uses ROW vectors and not COLUMN vectors. That's
-        # why we're computing rows here and not columns.
-        Q_rows = []
-        for t in S:
-            this_row = _mat2vec((s*t + t*s)/2)
-            Q_rows.append(W.coordinates(this_row))
-        Q = matrix(field, W.dimension(), Q_rows)
-        Qs.append(Q)
-
-    return (Qs, S)
+    W = V.span_of_basis( _mat2vec(s) for s in basis )
+    n = len(basis)
+    mult_table = [[W.zero() for j in range(n)] for i in range(n)]
+    for i in range(n):
+        for j in range(n):
+            mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
+            mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
+
+    return mult_table
 
 
 def _embed_complex_matrix(M):
@@ -2143,7 +1066,7 @@ def _unembed_quaternion_matrix(M):
 
 # The usual inner product on R^n.
 def _usual_ip(x,y):
-    return x.vector().inner_product(y.vector())
+    return x.to_vector().inner_product(y.to_vector())
 
 # The inner product used for the real symmetric simple EJA.
 # We keep it as a separate function because e.g. the complex
@@ -2177,12 +1100,12 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `(n^2 + n) / 2`::
+    The dimension of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = RealSymmetricEJA(n)
-        sage: J.degree() == (n^2 + n)/2
+        sage: J.dimension() == (n^2 + n)/2
         True
 
     The Jordan multiplication is what we think it is::
@@ -2202,17 +1125,15 @@ class RealSymmetricEJA(FiniteDimensionalEuclideanJordanAlgebra):
         True
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
+    def __init__(self, n, field=QQ):
         S = _real_symmetric_basis(n, field=field)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+        Qs = _multiplication_table_from_matrix_basis(S)
 
-        fdeja = super(RealSymmetricEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        fdeja = super(RealSymmetricEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S)
 
     def inner_product(self, x, y):
         return _matrix_ip(x,y)
@@ -2231,12 +1152,12 @@ class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `n^2`::
+    The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = ComplexHermitianEJA(n)
-        sage: J.degree() == n^2
+        sage: J.dimension() == n^2
         True
 
     The Jordan multiplication is what we think it is::
@@ -2256,17 +1177,16 @@ class ComplexHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
         True
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
+    def __init__(self, n, field=QQ):
         S = _complex_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+        Qs = _multiplication_table_from_matrix_basis(S)
+
+        fdeja = super(ComplexHermitianEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S)
 
-        fdeja = super(ComplexHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
 
     def inner_product(self, x, y):
         # Since a+bi on the diagonal is represented as
@@ -2292,12 +1212,12 @@ class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
     TESTS:
 
-    The degree of this algebra is `n^2`::
+    The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(1,5)
         sage: J = QuaternionHermitianEJA(n)
-        sage: J.degree() == 2*(n^2) - n
+        sage: J.dimension() == 2*(n^2) - n
         True
 
     The Jordan multiplication is what we think it is::
@@ -2317,17 +1237,15 @@ class QuaternionHermitianEJA(FiniteDimensionalEuclideanJordanAlgebra):
         True
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
+    def __init__(self, n, field=QQ):
         S = _quaternion_hermitian_basis(n)
-        (Qs, T) = _multiplication_table_from_matrix_basis(S)
+        Qs = _multiplication_table_from_matrix_basis(S)
 
-        fdeja = super(QuaternionHermitianEJA, cls)
-        return fdeja.__classcall_private__(cls,
-                                           field,
-                                           Qs,
-                                           rank=n,
-                                           natural_basis=T)
+        fdeja = super(QuaternionHermitianEJA, self)
+        return fdeja.__init__(field,
+                              Qs,
+                              rank=n,
+                              natural_basis=S)
 
     def inner_product(self, x, y):
         # Since a+bi+cj+dk on the diagonal is represented as
@@ -2375,26 +1293,28 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
         0
 
     """
-    @staticmethod
-    def __classcall_private__(cls, n, field=QQ):
-        Qs = []
-        id_matrix = matrix.identity(field, n)
-        for i in xrange(n):
-            ei = id_matrix.column(i)
-            Qi = matrix.zero(field, n)
-            Qi.set_row(0, ei)
-            Qi.set_column(0, ei)
-            Qi += matrix.diagonal(n, [ei[0]]*n)
-            # The addition of the diagonal matrix adds an extra ei[0] in the
-            # upper-left corner of the matrix.
-            Qi[0,0] = Qi[0,0] * ~field(2)
-            Qs.append(Qi)
+    def __init__(self, n, field=QQ):
+        V = VectorSpace(field, n)
+        mult_table = [[V.zero() for j in range(n)] for i in range(n)]
+        for i in range(n):
+            for j in range(n):
+                x = V.gen(i)
+                y = V.gen(j)
+                x0 = x[0]
+                xbar = x[1:]
+                y0 = y[0]
+                ybar = y[1:]
+                # z = x*y
+                z0 = x.inner_product(y)
+                zbar = y0*xbar + x0*ybar
+                z = V([z0] + zbar.list())
+                mult_table[i][j] = z
 
         # The rank of the spin algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded by
         # the ambient dimension).
-        fdeja = super(JordanSpinEJA, cls)
-        return fdeja.__classcall_private__(cls, field, Qs, rank=min(n,2))
+        fdeja = super(JordanSpinEJA, self)
+        return fdeja.__init__(field, mult_table, rank=min(n,2))
 
     def inner_product(self, x, y):
         return _usual_ip(x,y)